The nucleus is highly organized to facilitate coordinated gene transcription. Measuring the rheological properties of the nucleus and its sub-compartments will be crucial to understand the principles underlying nuclear organization. Here, we show that strongly localized temperature gradients (approaching 1°C/µm) can lead to substantial intra-nuclear chromatin displacements (>1 µm), while nuclear area and lamina shape remain unaffected.
View Article and Find Full Text PDFSignificance: Perineuronal nets (PNNs) are extracellular matrix structures implicated in learning, memory, information processing, synaptic plasticity, and neuroprotection. However, our understanding of mechanisms governing the evidently important contribution of PNNs to central nervous system function is lacking. A primary cause for this gap of knowledge is the absence of direct experimental tools to study their role .
View Article and Find Full Text PDFRapidly increasing scientific reports of exosomes and their biological effects have improved our understanding of their cellular sources and their cell-to-cell communication. These nano-sized vesicles act as potent carriers of regulatory bio-macromolecules and can induce regulatory functions by delivering them from its source to recipient cells. The details of their communication network are less understood.
View Article and Find Full Text PDFThe extracellular matrix (ECM) plays diverse roles in several physiological and pathological conditions. In the brain, the ECM is unique both in its composition and in functions. Furthermore, almost all the cells in the central nervous system contribute to different aspects of this intricate structure.
View Article and Find Full Text PDFCollagen is the most widely used substratum in cell culture and biomaterials applications. In this chapter, we describe a simple procedure to isolate collagen, which can be employed to a wide range of tissue sources, and subsequently use it to study the collagen crosslinking and stabilization abilities of various compounds. The protocol is designed for a multi-well format assay and thus can be used for simultaneous assessment of multiple number of compounds and can be easily adapted to a high-throughput screening setup.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
November 2017
Cutaneous wound healing is a complex mechanism with multiple processes orchestrating harmoniously for structural and functional restoration of the damaged tissue. Chronic non-healing wounds plagued with infection create a major healthcare burden and is one of the most frustrating clinical problems. Chronic wounds are manifested by prolonged inflammation, defective re-epithelialization and haphazard remodeling.
View Article and Find Full Text PDFDermatopontin (DPT) is a matricellular protein with cardinal roles in cutaneous wound healing. The protein is also reported to be altered in various anomalies including cancer. The present study is aimed to unravel the role of DPT in angiogenesis which is imperative in many physiological and pathological processes.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2016
Skin is a very complex organ and hence designing a bioengineered skin model replicating the essential physiological characteristics for replacing the diseased or damaged parts has been a challenging goal for many. Newer technologies for satisfying most of the criteria are being attempted with the copious efforts of biologists, engineers, physiologists, using multitude of features in combination. Amongst them nanotechnology based biomaterials have gained prominence owing to the enhanced pharmacokinetics, bio-distribution profile, extended half-life and reduced side effects.
View Article and Find Full Text PDFBiosens Bioelectron
June 2015
A rhodamine-naphthalimide dyad probe, 1, that selectively responds to the addition of trivalent metal ions (Fe(3+) or Al(3+) or Cr(3+)) via ultrafast Förster resonance energy transfer (FRET) from naphthalimide to rhodamine is designed and synthesized. 1 is highly selective to the trivalent metal ions and the presence of other monovalent or divalent metal ions do not affect its detection ability. The probe is highly sensitive and it can respond to the presence of trivalent metal ions even at sub-micromolar levels.
View Article and Find Full Text PDFIn this study, zein nanofibers based siRNA delivery system has been attempted for the first time. Here, the amphiphilic property of zein and the size advantage of nanofibers have been brought together in developing an ideal delivery system for siRNA. The morphological analysis of the GAPDH-siRNA loaded zein nanofibers revealed the proper encapsulation of the siRNA in the polymeric matrix.
View Article and Find Full Text PDFRe-epithelialization is a key event in wound healing and any impairment in that process is associated with various pathological conditions. Epidermal keratinocyte migration and proliferation during re-epithelialization is largely regulated by the cytokines and growth factors from the provisional matrix and dermis. Extracellular matrix consists of numerous growth factors which mediate cell migration via cell membrane receptors.
View Article and Find Full Text PDFA naphthalimide based fluorescent probe '1' that operates based on photoinduced electron transfer phenomenon is synthesized and its chemosensory application is explored. Among various metal ions, 1 selectively detects Fe(3+) with a detection limit of 3.0 × 10(-8) M.
View Article and Find Full Text PDFChronic cutaneous wound (CCW) is a major health care burden wherein the healing process is slow or rather static resulting in anatomical and functional restriction of the damaged tissue. Dysregulated expression and degradation of matrix proteins, growth factors and cytokines contribute to the disrupted and uncoordinated healing process of CCW. Therefore, therapeutic approaches for effective management of CCW should be focused towards identifying and manipulating the molecular defects, such as reduced bioavailability of the pro-healing molecules and elevated activity of proteases.
View Article and Find Full Text PDFCentrifugal spinning (C-Spin) is an emerging technology which uses centrifugal force to produce ultrafine fibers. Being a voltage free technique it can overcome the limitations of electrospinning. Owing to the unique characteristic features such as high surface area to volume ratio, porosity, mechanical strength and fiber alignment, centrifugal spun (C-spun) fibrous mat has a wide range of scope in various biomedical applications.
View Article and Find Full Text PDFKeloids are manifestations of abnormal wound repair with unresolved clinical complications. An effective therapeutic regimen has not been established for keloids, and current strategies are plagued by problems such as recurrence and side effects. Keloids, being a human-specific dermal fibroproliferative disorder are characterized by an excessive accumulation of extracellular matrix (ECM), thickened basement membrane, unregulated expression of matrix metalloproteases, growth factors, and cytokines.
View Article and Find Full Text PDF