Publications by authors named "Venkat Pisupati"

Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.

View Article and Find Full Text PDF

Background: Stem cell-based therapies for neurodegenerative diseases like Parkinson's disease are a promising approach in regenerative medicine and are now moving towards early stage clinical trials. However, a number of challenges remain including the ability to grow stem cells in vitro on a 3-dimensional scaffold, as well as their loss, by leakage or cell death, post-implantation. These issues could, however, be helped through the use of scaffolds that support the growth and differentiation of stem cells both in vitro and in vivo.

View Article and Find Full Text PDF

The past few decades have produced a large number of proof-of-concept studies in regenerative medicine. However, the route to clinical adoption is fraught with technical and translational obstacles that frequently consign promising academic solutions to the so-called "valley of death." Here, we present a proposed blueprint for translational regenerative medicine.

View Article and Find Full Text PDF

Human stem cells have the potential to transform medicine. However, hurdles remain to ensure that manufacturing processes produce safe and effective products. A thorough understanding of the biological processes occurring during manufacture is fundamental to assuring these qualities and thus, their acceptability to regulators and clinicians.

View Article and Find Full Text PDF

We have previously reported that the negative signaling regulator Similar Expression to FGF (hSef) is downregulated in prostate cancer and its loss is associated with clinical metastasis. Here, we explored the mechanistic basis of this finding. We first confirmed our clinical observation by testing hSef manipulation in an in vivo metastasis model.

View Article and Find Full Text PDF

Germline missense mutations affecting a single BRCA2 allele predispose humans to cancer. Here we identify a protein-targeting mechanism that is disrupted by the cancer-associated mutation, BRCA2(D2723H), and that controls the nuclear localization of BRCA2 and its cargo, the recombination enzyme RAD51. A nuclear export signal (NES) in BRCA2 is masked by its interaction with a partner protein, DSS1, such that point mutations impairing BRCA2-DSS1 binding render BRCA2 cytoplasmic.

View Article and Find Full Text PDF

The DNA damage response encompasses a complex series of signaling pathways that function to regulate and facilitate the repair of damaged DNA. Recent studies have shown that the repair of transcriptionally inactive chromatin, named heterochromatin, is dependent upon the phosphorylation of the co-repressor, Krüppel-associated box (KRAB) domain-associated protein (KAP-1), by the ataxia telangiectasia-mutated (ATM) kinase. Co-repressors, such as KAP-1, function to regulate the rigid structure of heterochromatin by recruiting histone-modifying enzymes, such HDAC1/2, SETDB1, and nucleosome-remodeling complexes such as CHD3.

View Article and Find Full Text PDF

We identify a role for the GDI-like solubilizing factor (GSF) PDEδ in modulating signalling through Ras family G proteins by sustaining their dynamic distribution in cellular membranes. We show that the GDI-like pocket of PDEδ binds and solubilizes farnesylated Ras proteins, thereby enhancing their diffusion in the cytoplasm. This mechanism allows more effective trapping of depalmitoylated Ras proteins at the Golgi and polycationic Ras proteins at the plasma membrane to counter the entropic tendency to distribute these proteins over all intracellular membranes.

View Article and Find Full Text PDF

Inherited heterozygous BRCA2 mutations predispose carriers to tissue-specific cancers, but somatic deletion of the wild-type allele is considered essential for carcinogenesis. We find in a murine model of familial pancreatic cancer that germline heterozygosity for a pathogenic Brca2 truncation suffices to promote pancreatic ductal adenocarcinomas (PDACs) driven by Kras(G12D), irrespective of Trp53 status. Unexpectedly, tumor cells retain a functional Brca2 allele.

View Article and Find Full Text PDF

Human MDC1/NFBD1 has been found to interact with key players of the DNA-damage response machinery. Here, we identify and describe a functional homologue of MDC1/ NFBD1 in Mus musculus. The mouse homologue, mMDC1, retains the key motifs identified in the human protein and in response to ionizing radiation forms foci that co-localize with the MRE11-RAD50-NBS1 (MRN) complex and factors such as gammaH2AX and 53BP1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4mij0irj3d2c10cshntmfrgv7i37c5se): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once