Cotton balls are a versatile and efficient tool commonly used in neurosurgical procedures to absorb fluids and manipulate delicate tissues. However, the use of cotton balls is accompanied by the risk of accidental retention in the brain after surgery. Retained cotton balls can lead to dangerous immune responses and potential complications, such as adhesions and textilomas.
View Article and Find Full Text PDFIn this study, we present USDL, a novel model that employs deep learning algorithms in order to reconstruct and enhance corrupted ultrasound images. We utilize an unsupervised neural network called an autoencoder which works by compressing its input into a latent-space representation and then reconstructing the output from this representation. We trained our model on a dataset that compromises of 15,700 images of the neck, wrist, elbow, and knee vasculature and compared the quality of the images generated using the structural similarity index (SSIM) and peak to noise ratio (PSNR).
View Article and Find Full Text PDF