Publications by authors named "Veniero D"

Statistical power in cognitive neuroimaging experiments is often very low. Low sample size can reduce the likelihood of detecting real effects (false negatives) and increase the risk of detecting non-existing effects by chance (false positives). Here, we document our experience of leveraging a relatively unexplored method of collecting a large sample size for simple electroencephalography (EEG) studies: by recording EEG in the community during public engagement and outreach events.

View Article and Find Full Text PDF

Objective: Cortico-cortical paired associative stimulation (ccPAS) is a form of dual-site transcranial magnetic stimulation (TMS) entailing a series of single-TMS pulses paired at specific interstimulus intervals (ISI) delivered to distant cortical areas. The goal of this article is to systematically review its efficacy in inducing plasticity in humans focusing on stimulation parameters and hypotheses of underlying neurophysiology.

Methods: A systematic review of the literature from 2009-2023 was undertaken to identify all articles utilizing ccPAS to study brain plasticity and connectivity.

View Article and Find Full Text PDF

Once formed, the fate of memory is uncertain. Subsequent offline interactions between even different memory types (actions versus words) modify retention. These interactions may occur due to different oscillations functionally linking together different memory types within a circuit.

View Article and Find Full Text PDF

Most people are often tempted by their impulses to "indulge" in high-calorie food, even if this behaviour is not consistent with their goal to control weight in the long term and might not be healthy. The outcome of this conflict is strongly dependent on inhibitory control. It has already been reported that individuals with weaker inhibitory control consume more high-calorie food, are more often unsuccessful dieters, overweight or obese compared to people with more effective inhibitory control.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution.

View Article and Find Full Text PDF

Alpha-band oscillatory activity over occipito-parietal areas is involved in shaping perceptual and cognitive processes, with a growing body of electroencephalographic (EEG) evidence indicating that pre-stimulus alpha-band amplitude relates to the subjective perceptual experience, but not to objective measures of visual task performance (discrimination accuracy). The primary aim of the present transcranial magnetic stimulation (TMS) study was to investigate whether causality can be established for this relationship, using rhythmic (alpha-band) TMS entrainment protocols. It was anticipated that pre-stimulus 10 Hz-TMS would induce changes in subjective awareness ratings but not accuracy, in the visual hemifield contralateral to TMS.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) is a popular technique that has been used for manipulating brain oscillations and inferring causality regarding the brain-behaviour relationship. Although it is a promising tool, the variability of tACS results has raised questions regarding the robustness and reproducibility of its effects. Building on recent research using tACS to modulate visuospatial attention, we here attempted to replicate findings of lateralized parietal tACS at alpha frequency to induce a change in attention bias away from the contra- towards the ipsilateral visual hemifield.

View Article and Find Full Text PDF

Voluntary allocation of visual attention is controlled by top-down signals generated within the Frontal Eye Fields (FEFs) that can change the excitability of lower-level visual areas. However, the mechanism through which this control is achieved remains elusive. Here, we emulated the generation of an attentional signal using single-pulse transcranial magnetic stimulation to activate the FEFs and tracked its consequences over the visual cortex.

View Article and Find Full Text PDF

Fluid intelligence (gf) represents a crucial component of human cognition, as it correlates with academic achievement, successful aging, and longevity. However, it has strong resilience against enhancement interventions, making the identification of gf enhancement approaches a key unmet goal of cognitive neuroscience. Here, we applied a spike-timing-dependent plasticity (STDP)-inducing brain stimulation protocol, named cortico-cortical paired associative stimulation (cc-PAS), to modulate gf in 29 healthy young subjects (13 females-mean ± standard deviation, 25.

View Article and Find Full Text PDF

Existing literature on sensory deprivation suggests that short-lasting periods of dark adaptation (DA) can cause changes in visual cortex excitability. DA cortical effects have previously been assessed through phosphene perception, i.e.

View Article and Find Full Text PDF

Neuroimaging and transcranial magnetic stimulation (TMS) studies have implicated a dorsal fronto-parietal network in endogenous attention control and a more ventral set of areas in exogenous attention shifts. However, the extent and circumstances under which these cortical networks overlap and/or interact remain unclear. Crucially, whereas previous studies employed experimental designs that tend to confound exogenous with endogenous attentional engagement, we used a cued target discrimination paradigm that behaviourally dissociates exogenous from endogenous attention processes.

View Article and Find Full Text PDF

How neural representations of low-level visual information are accessed by higher-order processes to inform decisions and give rise to conscious experience is a longstanding question. Research on perceptual decision making has revealed a late event-related EEG potential (the Centro-Parietal Positivity, CPP) to be a correlate of the accumulation of sensory evidence. We tested how this evidence accumulation signal relates to externally presented (physical) and internally experienced (subjective) sensory evidence.

View Article and Find Full Text PDF

Oscillatory neural activity is a fundamental characteristic of the mammalian brain spanning multiple levels of spatial and temporal scale. Current theories of neural oscillations and analysis techniques employed to investigate their functional significance are based on an often implicit assumption: In the absence of experimental manipulation, the spectral content of any given EEG- or MEG-recorded neural oscillator remains approximately stationary over the course of a typical experimental session (∼1 h), spontaneously fluctuating only around its dominant frequency. Here, we examined this assumption for ongoing neural oscillations in the alpha-band (8-13 Hz).

View Article and Find Full Text PDF

Prestimulus oscillatory neural activity has been linked to perceptual outcomes during performance of psychophysical detection and discrimination tasks. Specifically, the power and phase of low frequency oscillations have been found to predict whether an upcoming weak visual target will be detected or not. However, the mechanisms by which baseline oscillatory activity influences perception remain unclear.

View Article and Find Full Text PDF

Prismatic adaption (PA) has been proposed as a tool to induce neural plasticity and is used to help neglect rehabilitation. It leads to a recalibration of visuomotor coordination during pointing as well as to aftereffects on a number of sensorimotor and attention tasks, but whether these effects originate at a motor or attentional level remains a matter of debate. Our aim was to further characterize PA aftereffects by using an approach that allows distinguishing between effects on attentional and motor processes.

View Article and Find Full Text PDF

Actions are typically associated with sensory consequences. For example, knocking at a door results in predictable sounds. These self-initiated sensory stimuli are known to elicit smaller cortical responses compared to passively presented stimuli, e.

View Article and Find Full Text PDF

Transcranial electrical stimulation (tES) is being investigated as an experimental and clinical interventional technique in human participants. While promising, important limitations have been identified, including weak effect sizes and high inter- and intra-individual variability of outcomes. Here, we compared two "inhibitory" tES-techniques with supposedly different mechanisms of action as to their effects on performance in a visuospatial attention task, and report on a direct replication attempt.

View Article and Find Full Text PDF

Voluntary movement control and execution are regulated by the influence of the cerebellar output over different interconnected cortical areas, through dentato-thalamo connections. In the present study we applied transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess the effects of cerebellar theta-burst stimulation (TBS) over the controlateral primary motor cortex (M1) and posterior parietal cortex (PPC) in a group of healthy volunteers. We found a TBS-dependent bidirectional modulation over TMS-evoked activity; specifically, cTBS increased whereas iTBS decreased activity between 100 and 200 ms after TMS, in a similar manner over both M1 and PPC areas.

View Article and Find Full Text PDF

Background: The effects of deep brain stimulation of the subthalamic nucleus (DBS-STN) and L-dopa (LD) on cortical activity in Parkinson's disease (PD) are poorly understood.

Objectives: By combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) we explored the effects of STN-DBS, either alone or in combination with L-Dopa (LD), on TMS-evoked cortical activity in a sample of implanted PD patients.

Methods: PD patients were tested in three clinical conditions: i) LD therapy with STN-DBS turned on (ON/ON condition); ii) without LD therapy with STN-DBS turned on (OFF/ON condition); iii) without LD therapy with STN-DBS turned off (OFF/OFF condition).

View Article and Find Full Text PDF

A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity ("frequency-tuning"). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.

View Article and Find Full Text PDF