The photodissociation of van der Waals complexes of iodine X-I (X = I, CH) excited via Charge-Transfer (CT) band has been studied with the velocity map imaging technique. Photodissociation of both complexes gives rise to translationally "hot" molecular iodine I via channels differing by kinetic energy and angular distribution of the recoil directions. These measured characteristics together with the analysis of the model potential energy surface for these complexes allow us to infer the back-electron-transfer (BET) in the CT state to be a source of observed photodissociation channels and to make conclusions on the location of conical intersections where the BET process takes place.
View Article and Find Full Text PDFThe mechanism and spectral dependence of the quantum yield of singlet oxygen O(2)(a (1)Δ(g)) photogenerated by UV radiation in gaseous oxygen at elevated pressure (32-130 bar) have been experimentally investigated within the 238-285 nm spectral region overlapping the range of the Wulf bands in the absorption spectrum of oxygen. The dominant channel of singlet oxygen generation with measured quantum yield up to about 2 is attributed to the one-quantum absorption by the encounter complexes O(2)-O(2). This absorption gives rise to oxygen in the Herzberg III state O(2)(A' (3)Δ(u)), which is assumed to be responsible for singlet oxygen production in the relaxation process O(2)(A' (3)Δ(u), υ) + O(2)(X (3)Σ(g)(-)) → O(2)({a (1)Δ(g)}, {b (1)Σ(g)(+)}) + O(2)({a (1)Δ(g), υ = 0}, {b (1)Σ(g)(+), υ = 0}) with further collisional relaxation of b to a state.
View Article and Find Full Text PDF