Due to high variability and rapid life cycle, influenza virus is able to develop drug resistance against direct-acting antivirals. Development of novel virus-in113039hibiting drugs is therefore important goal. Previously, we identified camphor derivative, camphecene, as an effective anti-influenza compound.
View Article and Find Full Text PDFJ Pharm Biomed Anal
February 2020
A method of quantitative determination of camphecene, a new anti-influenza agent, in rat blood plasma based on LC-MS/MS was developed, validated and used to study the distribution of the agent between blood cells and blood plasma. The method was validated according to FDA and EMA recommendations in terms of selectivity, linearity, accuracy, precision, recovery, stability and carry-over. Plasma samples were precipitated with methanol followed by the addition of a methanolic solution of 2-adamantylamine hydrochloride (internal standard).
View Article and Find Full Text PDFA series of new betulinic and ursolic acid conjugates with a lipophilic triphenylphosphonium cation, meant to enhance the bioavailability and mitochondriotropic action of natural triterpenes, have been synthesized. The experiments on three human cancer cell lines (MCF-7, HCT-116 and TET21N) revealed that all the obtained triphenylphosphonium triterpene acid derivatives not only showed higher cytotoxicity as compared to betulinic acid but were also markedly superior in triggering mitochondria-dependent apoptosis, as assessed using a range of apoptosis markers such as cytochrome release, stimulation of caspase-3 activity, and cleavage of poly(ADP-ribose) polymerase, which is one of the targets of caspase 3. The IC was much lower for all triphenylphosphonium derivatives when compared to betulinic acid.
View Article and Find Full Text PDF