Nestle Nutr Inst Workshop Ser
November 2020
Significantly preterm and low-birthweight (LBW) babies have diminished lung and gut development, generally fail to thrive, have increased mortality and higher frequency of mature-onset disease. Mothers often cannot breastfeed, and babies receive either formula or pasteurized donor milk, which may further limit the baby's recovery. New approaches are required to manage the early stages of neonatal development.
View Article and Find Full Text PDFIt is now clear that milk has multiple functions; it provides the most appropriate nutrition for growth of the newborn, it delivers a range of bioactives with the potential to stimulate development of the young, it has the capacity to remodel the mammary gland (stimulate growth or signal cell death) and finally milk can provide protection from infection and inflammation when the mammary gland is susceptible to these challenges. There is increasing evidence to support studies using an Australian marsupial, the tammar wallaby (Macropus eugenii), as an interesting and unique model to study milk bioactives. Reproduction in the tammar wallaby is characterized by a short gestation, birth of immature young and a long lactation.
View Article and Find Full Text PDFJ Mammary Gland Biol Neoplasia
December 2014
The composition of milk includes factors required to provide appropriate nutrition for the growth of the neonate. However, it is now clear that milk has many functions and comprises bioactive molecules that play a central role in regulating developmental processes in the young while providing a protective function for both the suckled young and the mammary gland during the lactation cycle. Identifying these bioactives and their physiological function in eutherians can be difficult and requires extensive screening of milk components that may function to improve well-being and options for prevention and treatment of disease.
View Article and Find Full Text PDFNanomaterials are rich in potential, particularly for the formation of scaffolds that mimic the landscape of the host environment of the cell. This niche arises from the spatial organization of a series of biochemical and biomechanical signals. Self-assembling peptides have emerged as an important tool in the development of functional (bio-)nanomaterials; these simple, easily synthesized subunits form structures which present the properties of these larger, more complex systems.
View Article and Find Full Text PDF