Publications by authors named "Vener M"

The halogen bonding in molecular crystals and supramolecular assemblies has been widely investigated. Special attention is given to the molecular structures capable of simultaneously exhibiting different types of non-covalent interactions, including conventional hydrogen bonds and halogen bonds. This paper systematically analyzes crystalline peroxosolvates of bispidine-based bis-amide derivatives, containing haloacetic acid residues, namely previously reported 1,1'-(1,5-dimethyl-3,7-diazabicyclo[3.

View Article and Find Full Text PDF

Trimethylglycine (glycine betaine, GB) is an important organic osmolyte that accumulates in various plant species in response to environmental stresses and has significant potential as a bioactive agent with low environmental impact. It is assumed that the hydration of GB is playing an important role in the protective mechanism. The hydration and aggregation properties of GB have not yet been studied in detail at the atomistic level.

View Article and Find Full Text PDF

Intermolecular interactions, in particular hydrogen bonds, play a key role in crystal engineering. The ability to form hydrogen bonds of various types and strengths causes competition between supramolecular synthons in pharmaceutical multicomponent crystals. In this work, we investigate the influence of positional isomerism on the packing arrangements and the network of hydrogen bonds in multicomponent crystals of the drug riluzole with hydroxyl derivatives of salicylic acid.

View Article and Find Full Text PDF

Charge transport in crystalline organic semiconductors (OSCs) is considerably hindered by low-frequency vibrations introducing dynamic disorder in the charge transfer integrals. Recently, we have shown that the contributions of various vibrational modes to the dynamic disorder correlate with their Raman intensities and suggested a Raman-based approach for estimation of the dynamic disorder and search for potentially high-mobility OSCs. In the present paper, we showcase this approach by revealing the highest-mobility OSC(s) in two series of crystalline naphthalene diimide derivatives bearing alkyl or cycloalkyl substituents.

View Article and Find Full Text PDF

Energy/enthalpy of intermolecular hydrogen bonds (H-bonds) in crystals have been calculated in many papers. Most of the theoretical works used non-periodic models. Their applicability for describing intermolecular H-bonds in solids is not obvious since the crystal environment can strongly change H-bond geometry and energy in comparison with non-periodic models.

View Article and Find Full Text PDF

The study of the formation of microstructures during the interaction of a protonated drug-like compound (API) with a maleic acid monoanion sheds light on the assembly processes in an aqueous solution at the molecular level. Molecular dynamics (MD) simulations coupled with density functional theory (DFT) calculations made it possible to find initial hydrogen bonding motifs during the assembly process, leading to the formation of heterodimers and trimers. The process of trimer formation [protonated API-maleic acid monoanion-protonated API] proceeds through the formation of three intermolecular H-bonds by the CO group of the maleic acid monoanion in both systems.

View Article and Find Full Text PDF

Self-assembly of organic ions in aqueous solutions is a hot topic at the present time, and substances that are well-soluble in water are usually studied. In this work, aqueous solutions of sodium diclofenac are investigated, which, like most medicinal compounds, is poorly soluble in water. Classical MD modeling of an aqueous solution of diclofenac sodium showed equilibrium between the hydrated anion and the hydrated dimer of the diclofenac anion.

View Article and Find Full Text PDF

Two new peroxosolvates of drug-like compounds were synthesized and studied by a combination of X-ray crystallographic, Raman spectroscopic methods, and periodic DFT computations. The enthalpies of H-bonds formed by hydrogen peroxide (HO) as a donor and an acceptor of protons were compared with the enthalpies of analogous H-bonds formed by water (HO) in isomorphic (isostructural) hydrates. The enthalpies of H-bonds formed by HO as a proton donor turned out to be higher than the values of the corresponding H-bonds formed by HO.

View Article and Find Full Text PDF

Background: Residency selection in the United States relied on in-person interviews for many decades. The COVID-19 pandemic and recommendations from the Coalition for Physician Accountability (COPA) required programs to implement virtual interviews for the 2020-2021 residency selection cycle. Although virtual interviews may become the norm in the future, there is scant data at the institutional level to inform how to best approach this process.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates a specific aryl base compound and its deutero-variant using various scientific methods, including neutron scattering and spectroscopy.
  • The research identifies that a strong hydrogen bond present in the compound behaves like a quasi-aromatic bond and classifies its vibrational modes through detailed spectral analysis.
  • Furthermore, the study explores the polymorphism of the compound under different temperatures using X-ray diffraction techniques, revealing important structural insights.
View Article and Find Full Text PDF

Despite the technological importance of urea perhydrate (percarbamide) and sodium percarbonate, and the growing technological attention to solid forms of peroxide, fewer than 45 peroxosolvates were known by 2000. However, recent advances in X-ray diffractometers more than tripled the number of structurally characterized peroxosolvates over the last 20 years, and even more so, allowed energetic interpretation and gleaning deeper insight into peroxosolvate stability. To date, 134 crystalline peroxosolvates have been structurally resolved providing sufficient insight to justify a first review article on the subject.

View Article and Find Full Text PDF

This paper bridges the gap between high-level computations of gas-phase models of 1 : 1 arene-arene complexes and calculations of the two-component (binary) organic crystals using atom-atom potentials. The studied crystals consist of electron-rich and electron-deficient compounds, which form infinite stacks (columns) of heterodimers. The sublimation enthalpy of crystals has been evaluated by DFT periodic calculations, while intermolecular interactions have been characterized by Bader analysis of the periodic electronic density.

View Article and Find Full Text PDF

Synthesis of multicomponent solid forms is an important method of modifying and fine-tuning the most critical physicochemical properties of drug compounds. The design of new multicomponent pharmaceutical materials requires reliable information about the supramolecular arrangement of molecules and detailed description of the intermolecular interactions in the crystal structure. It implies the use of a combination of different experimental and theoretical investigation methods.

View Article and Find Full Text PDF

The nature and strength of weak interactions with organic fluorine in the solid state are revealed by periodic density functional theory (periodic DFT) calculations coupled with experimental data on the structure and sublimation thermodynamics of crystalline organofluorine compounds. To minimize other intermolecular interactions, several sets of crystals of perfluorinated and partially fluorinated organic molecules are considered. This allows us to establish the theoretical levels providing an adequate description of the metric and electron-density parameters of the C-F⋯F-C interactions and the sublimation enthalpy of crystalline perfluorinated compounds.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how local structures affect the phosphorus NMR chemical shift tensor (CST) using both experimental methods and theoretical simulations with density functional theory.
  • The main finding is that a few key noncovalent interactions between phosphorus groups and nearby atoms significantly influence the CST, which can be analyzed using Bader analysis.
  • A new approach has been developed to connect experimental CST findings to specific local structures, providing a valuable tool for research on surfaces, complex molecules, and amorphous materials.
View Article and Find Full Text PDF

The hypercoordinated silicon chlorides ClSi[(-OCH)N] () and ClSi[(OCHMeCH)N] () were used for the synthesis of catenated derivatives (MeSi)SiSi[(-OCH)N] (), (MeSi)SiSiMeSiMeSi(SiMe)Si[(-OCH)N] (), and (MeSi)SiSi[(OCHMeCH)N] () in reactions with (MeSi)SiK·THF () or (MeSi)SiK·[18-crown-6] (). It was found that the nature of the (MeSi)SiK solvate determines the product of interaction, resulting in the formation of (MeSi)Si(CH)OSi[(OCHMeCH)N] () or . Compounds obtained were characterized using multinuclear NMR and UV-vis spectroscopy and mass spectrometry.

View Article and Find Full Text PDF

Diclofenac (active ingredient of Voltaren) has a significant, multifaceted role in medicine, pharmacy, and biochemistry. Its physical properties and impact on biomolecular structures still attract essential scientific interest. However, its interaction with water has not been described yet at the molecular level.

View Article and Find Full Text PDF

Recent theoretical studies have shown that charge transport in high-mobility organic semiconductors is limited by low-frequency vibrations because of strong non-local electron-phonon interaction. Here we investigate two high-electron-mobility organic semiconductors with similar molecular structures but considerably different crystal packings, TCNQ and F2-TCNQ, and reveal the relationship between the experimental low-frequency Raman spectra and the calculated contributions of various vibrational modes to the electron-phonon interaction. We suggest that the combination of Raman spectroscopy with solid-state DFT is a powerful tool for probing electron-phonon interaction and focused search for high-mobility organic semiconductors.

View Article and Find Full Text PDF

Organic electronics requires materials with high charge mobility. Despite decades of intensive research, charge transport in high-mobility organic semiconductors has not been well understood. In this Letter, we address the physical mechanism underlying the exceptionally high band-like electron mobility in F-TCNQ (2,5-difluoro-7,7,8,8-tetracyanoquinodimethane) single crystals among a crystal family of similar compounds F-TCNQ (n = 0, 2, 4) using a combined experimental and theoretical approach.

View Article and Find Full Text PDF

Charge-assisted hydrogen bonds (CAHBs) play critical roles in many systems from biology through to materials. In none of these areas has the role and function of CAHBs been explored satisfactorily because of the lack of data on the energy of CAHBs in the condensed phases. We have, for the first time, quantified three types of CAHBs in both the condensed and gas phases for 1-(2'-hydroxylethyl)-3-methylimidazolium acetate ([C2OHmim][OAc]).

View Article and Find Full Text PDF

Cocrystal screening of 4-hydroxybenzamide with a number of salicylates (salicylic acid, SA; 4-aminosalicylic acid, PASA; acetylsalicylic acid, ASA; and salicylsalicylic acid, SSA) was conducted to confirm the formation of two cocrystals, [SA+4-OHBZA] (1:1) and [PASA+4-OHBZA] (1:1). Their structures were determined using single-crystal X-ray diffraction, and the hydrogen-bond network topology was studied. Thermodynamic characteristics of salicylic acid cocrystal sublimation were obtained experimentally.

View Article and Find Full Text PDF

Salt bridges and ionic interactions play an important role in protein stability, protein-protein interactions, and protein folding. Here, we provide the classical MD simulations of the structure and IR signatures of the arginine (Arg)-glutamate (Glu) salt bridge. The Arg-Glu model is based on the infinite polyalanine antiparallel two-stranded β-sheet structure.

View Article and Find Full Text PDF

Purpose: When medical students move from the classroom into clinical practice environments, their roles and learning challenges shift dramatically from a formal curricular approach to a workplace learning model. Continuity among peers during clinical clerkships may play an important role in this different mode of learning. We explored students' perceptions about how they achieved workplace learning in the context of intentionally formed or ad hoc peer groups.

View Article and Find Full Text PDF

A new cocrystal of 2-hydroxybenzamide (A) with 4-acetamidobenzoic acid (B) has been obtained by the DSC screening method. Thermophysical analysis of the aggregate [A:B] has been conducted and a fusion diagram has been plotted. Cocrystal formation from melts was studied by using thermomicroscopy.

View Article and Find Full Text PDF