Publications by authors named "Venema G"

We isolated and characterized four Bacillus subtilis competence-deficient mutants. The mutants were obtained by nitrosoguanidine mutagenesis and by screening for mutants unable to be transformed both on solid and in liquid medium. Most of the mutants obtained in this way were tested for their sensitivity to the DNA-damaging agents methyl methanesulfonate, mitomycin C, and UV light.

View Article and Find Full Text PDF

We have cloned the hisH tyrA wild-type genes of Bacillus subtilis with the aid of the chimeric plasmid pBJ194, which replicates both in B. subtilis and Escherichia coli. Primary cloning was done in E.

View Article and Find Full Text PDF

By means of homopolymer dG-dC tailing, using PstI linearized pBR327 as vector, we constructed small plasmids containing the entire Escherichia coli recA gene. The 1.8-kb inserts were recloned in the Bacillus subtilis expression vector pPL608 in a B.

View Article and Find Full Text PDF

Streptococcus cremoris Wg2 plasmid pWV01 was introduced in Bacillus subtilis by protoplast transformation. The yield of pWV01 isolated from B. subtilis was low.

View Article and Find Full Text PDF

In DNA binding-deficient mutants of Bacillus subtilis a competence-specific protein with a subunit molecular weight of 18,000 was absent. The native protein containing this subunit was purified from B. subtilis membranes by chromatography on hydroxyapatite, DEAE-cellulose, and Sephacryl S-200.

View Article and Find Full Text PDF

H1, a 5-hydroxymethyluracil (HMU)-containing Bacillus subtilis bacteriophage, was neither restricted nor modified upon infection of B. subtilis R cells. In vitro, H1 DNA was not restricted by BsuR under standard conditions (200 mM salt), although the expected frequency of -GGCC- cleavage sites was approximately 250.

View Article and Find Full Text PDF

In the HM5 mutant of Haemophilus influenzae, which carries a mutation in the rec-1 gene region and in which the replication of donor-recipient DNA complexes formed in transformation is inhibited, the transformation frequency could be greatly enhanced by inhibition of protein synthesis during transformation, indicating that transformation in the HM5 mutant induces the synthesis of a protein that inhibits the replication of the donor-recipient DNA complexes. This induction occurred in an early step of the recombination. Synthesis of the wild-type Rec-1 protein after transformation of the HM5 mutant with wild-type DNA could diminish the inhibiting effect on DNA replication.

View Article and Find Full Text PDF

A mutant of Haemophilus influenzae, designated HM5, carrying a mutation in the rec-1 gene region, is described. This mutant transformed approximately 100-fold less well than does the wild type, but approximately 100-fold better than rec1 mutants. The mutant was less sensitive to UV irradiation and less "reckless" than rec1 mutants.

View Article and Find Full Text PDF

In CsCl density gradients of lysates from competent Bacillus subtilis cells, which had been exposed to heterologous bacterial DNA, very little donor-recipient complex (DRC) formation could be detected. The present study demonstrates that photocrosslinking of such lysates by irradiation with long-wave UV light in the presence of 4,5',8-trimethylpsoralen results in a dramatic increase in the amount of heterologous DRC. This phenomenon may be interpreted as the stabilization of a pre-existing weak association between entered heterologous donor DNA and one recipient strand in unpaired regions of the chromosome.

View Article and Find Full Text PDF

When recipient Bacillus subtilis carrying chromosomal trimethylpsoralen cross-links were transformed, the donor marker activity decreased with the extent of cross-linking. Additional donor marker activity was lost upon incubation of the reextracted DNA with nuclease S1, particularly at higher levels of cross-linking. Physical analysis of the reextracted DNA showed that the donor DNA was progressively excluded from heteroduplex formation as the frequency of cross-links in the recipient DNA increased.

View Article and Find Full Text PDF

In addition to stable donor-recipient DNA complexes, unstable complexes between donor and recipient DNA were formed in vitro with Bacillus subtilis. Whereas the stable complexes survived CsCl gradient centrifugation at pH 11.2 and phenol plus sodium p-aminosalicylate extraction with 0.

View Article and Find Full Text PDF

A comparison of the nucleolytic activities in competent and physiologically low-competent wild-type cultures of Bacillus subtilis in DNA-containing sodium dodecyl sulfate-polyacrylamide gels revealed the existence of three competence-associated nuclease activities with apparent molecular weights of 13,000, 15,000, and 26,000. The three activities, which were dependent on manganese or magnesium ions, were specifically present in the competent fraction of a competent culture. The competence-associated nucleolytic activities of eight transformation-defective mutant strains were assayed, resulting in the following three classes of mutants: (i) four strains which, according to this assay, were not impaired in any of the nucleolytic activities mentioned above; (ii) one strain which was strongly impaired in the 13,000- and 26,000-molecular-weight activities, but showed a considerable level of the 15,000-molecular-weight activity; and (iii) three strains which were severely impaired in all three activities.

View Article and Find Full Text PDF

This study explored the role of the proton motive force in the processes of DNA binding and DNA transport of genetic transformation of Bacillus subtilis 168 strain 8G-5 (trpC2). Transformation was severely inhibited by the ionophores valinomycin, nigericin, and 3,5-di-tert-4-hydroxybenzylidenemalononitrite (SF-6847) and by tetraphenylphosphonium. The ionophores valinomycin and nigericin also severely inhibited binding of transforming DNA to the cell envelope, whereas SF-6847 and carbonylcyanide-p-trifluoromethoxyphenylhydrazone hardly affected binding.

View Article and Find Full Text PDF

Competent Bacillus subtilis cells were exposed to radioactive and density labeled donor DNA extracted from B. pumilus and B. licheniformis.

View Article and Find Full Text PDF

The role of homology between donor and recipient DNAs in the protection of transfecting DNA against restriction by competent Bacillus subtilis R cells was studied under marker rescue conditions with modified helper phage. By comparing restriction under conditions of preinfection marker rescue and superinfection marker rescue, the significance of DNA homology during the initial stages of DNA processing by competent cells could be studied. The results showed that both in preinfection and in superinfection, complete protection against restriction of transfectants produced via rescue by the modified homologous helper chromosome occurred.

View Article and Find Full Text PDF

Transformation-deficient mutants of Bacillus subtilis have been identified either by screening for a nuclease-deficient phenotype on methyl green-DNA agar or for nontransformability on transforming DNA-containing agar. After purification of the mutations causing a reduction in the entry of DNA, a set of isogenic entry-deficient strains was obtained. In addition to being entry deficient to various extents, the strains usually were less capable of association with DNA than the entry-proficient parent.

View Article and Find Full Text PDF

Lysates obtained shortly after entry of transforming DNA to Bacillus subtilis contain donor-recipient DNA complexes, in which the donor moiety is associated with the recipient DNA in an unstable way. The complexes could be artificially stabilized by crosslinking with 4,5',8-trimethylpsoralen. The unstable complexes dissociated upon helix-destabilizing treatments, such as heating at 70 degrees C, and CsCl gradient centrifugation at pH 11.

View Article and Find Full Text PDF

With the use of two-dimensional gel electrophoresis, the proteins present in a transformation-proficient B. subtilis strain were compared with those present in an isogenic, recombination-deficient strain carrying the recE4 mutation. One protein (molecular weight 45 kD, iso-electric point 5.

View Article and Find Full Text PDF

In the presence of the widely used tranquilizer, chlorpromazine, transforming DNA of Bacillus subtilis is photoinactivated by long-wave ultraviolet light. The loss of biological activity is predominantly caused by lack of binding of the DNA to recipient cells and the introduction of single-strand breaks in the treated DNA.

View Article and Find Full Text PDF

In transformation of Haemophilus influenzae, donor deoxyribonucleic acid (DNA) enters into competent cells in the presence of ethylenediaminetetraacetic acid (EDTA), which prevents the formation of single stranded regions in the donor DNA that has entered. If after entry of DNA the recipient cells were first incubated at 17 degrees C and then at 37 degrees C in the continuous presence of EDTA, almost no integration occurred. On the other hand, if after entry of DNA the cells were incubated first at 17 degrees C in the absence of EDTA, allowing the generation of single-stranded regions (integration is blocked at this temperature), and then at 37 degrees C in the presence of EDTA, donor-recipient DNA complexes were formed.

View Article and Find Full Text PDF

Lysates containing folded chromosomes of competent Bacillus subtilis were prepared. The chromosomes were supercoiled, as indicated by the biphasic response of their sedimentation rates to increasing concentrations of ethidium bromide. Limited incubation of the lysates with increasing concentrations of ribonucleases resulted in a gradual decrease in the sedimentation velocity of the deoxyribonucleic acid (DNA) until finally a constant S value was reached.

View Article and Find Full Text PDF

4,5',8-Trimethylpsoralen (TMP) monoadducts inactive transforming deoxyribonucleic acid (DNA) in Bacillus subtilis. Contrary to TMP diadducts (TMP cross-links), which severely inhibit entry of donor DNA (G. Venema and U.

View Article and Find Full Text PDF

Polyethylene glycol-treated protoplasts of B. subtilis can be transformed by plasmid DNA at very high frequencies (Chang and Cohen 1979). From analysis of plasmid mediated transformation of transformation-deficient mutants it appeared that mutants, reduced in the transformation by plasmid DNA in the competent state, were plasmid transformation-proficient when transformed as protoplasts.

View Article and Find Full Text PDF

Only multimeric, and not monomeric forms of B. subtilis plasmids can transform B. subtilis cells (Canosi et al.

View Article and Find Full Text PDF

Rapid development of competence can be induced in cultures of Bacillus subtilis by incubation at 37 degrees C after previous growth at 42 degrees C. This temperature-induced competence was accompanied by an increase in DNA binding capacity and breakdown of donor DNA. Inhibition of protein synthesis prevented the rapid increase of competence.

View Article and Find Full Text PDF