Adams and Collyer argue that contemporary multivariate (Gaussian) phylogenetic comparative methods are prone to favouring more complex models of evolution and sometimes rotation invariance can be an issue. Here we dissect the concept of rotation invariance and point out that, depending on the understanding, this can be an issue with any method that relies on numerical instead of analytical estimation approaches. We relate this to the ongoing discussion concerning phylogenetic principal component analysis.
View Article and Find Full Text PDFThe advent of fast computational algorithms for phylogenetic comparative methods allows for considering multiple hypotheses concerning the co-adaptation of traits and also for studying if it is possible to distinguish between such models based on contemporary species measurements. Here we demonstrate how one can perform a study with multiple competing hypotheses using mvSLOUCH by analyzing two data sets, one concerning feeding styles and oral morphology in ungulates, and the other concerning fruit evolution in Ferula (Apiaceae). We also perform simulations to determine if it is possible to distinguish between various adaptive hypotheses.
View Article and Find Full Text PDFPlasmodium falciparum sporozoite (PfSPZ) direct venous inoculation (DVI) using cryopreserved, infectious PfSPZ (PfSPZ Challenge [Sanaria, Rockville, Maryland]) is an established controlled human malaria infection model. However, to evaluate new chemical entities with potential blood-stage activity, more detailed data are needed on safety, tolerability, and parasite clearance kinetics for DVI of PfSPZ Challenge with established schizonticidal antimalarial drugs. This open-label, phase Ib study enrolled 16 malaria-naïve healthy adults in two cohorts (eight per cohort).
View Article and Find Full Text PDFInfectious diseases are particularly challenging for genome-wide association studies (GWAS) because genetic effects from two organisms (pathogen and host) can influence a trait. Traditional GWAS assume individual samples are independent observations. However, pathogen effects on a trait can be heritable from donor to recipient in transmission chains.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
April 2022
Simulation of combination therapies is challenging due to computational complexity. Either a simple model is used to simulate the response for many combinations of concentration to generate a response surface but parameter variability and uncertainty are neglected and the concentrations are constant-the link to the doses to be administered is difficult to make-or a population pharmacokinetic/pharmacodynamic model is used to predict the response to combination therapy in a clinical trial taking into account the time-varying concentration profile, interindividual variability (IIV), and parameter uncertainty but simulations are limited to only a few selected doses. We devised new algorithms to efficiently search for the combination doses that achieve a predefined efficacy target while taking into account the IIV and parameter uncertainty.
View Article and Find Full Text PDFThe HIV-1 reservoir is the major hurdle to curing HIV-1. However, the impact of the viral genome on the HIV-1 reservoir, i.e.
View Article and Find Full Text PDFPhylogenetic comparative methods (PCMs) have been used to study the evolution of quantitative traits in various groups of organisms, ranging from micro-organisms to animal and plant species. A common approach has been to assume a Gaussian phylogenetic model for the trait evolution along the tree, such as a branching Brownian motion (BM) or an Ornstein-Uhlenbeck (OU) process. Then, the parameters of the process have been inferred based on a given tree and trait data for the sampled species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
Phylogenetic comparative methods are widely used to understand and quantify the evolution of phenotypic traits, based on phylogenetic trees and trait measurements of extant species. Such analyses depend crucially on the underlying model. Gaussian phylogenetic models like Brownian motion and Ornstein-Uhlenbeck processes are the workhorses of modeling continuous-trait evolution.
View Article and Find Full Text PDFPathogen traits, such as the virulence of an infection, can vary significantly between patients. A major challenge is to measure the extent to which genetic differences between infecting strains explain the observed variation of the trait. This is quantified by the trait's broad-sense heritability, H2.
View Article and Find Full Text PDFPathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence-measured as the rate of decline of CD4+ T cells-and per-parasite pathogenicity are heritable from donor to recipient.
View Article and Find Full Text PDFPhylogenetics and phylodynamics are central topics in modern evolutionary biology. Phylogenetic methods reconstruct the evolutionary relationships among organisms, whereas phylodynamic approaches reveal the underlying diversification processes that lead to the observed relationships. These two fields have many practical applications in disciplines as diverse as epidemiology, developmental biology, palaeontology, ecology, and linguistics.
View Article and Find Full Text PDF