The activation energies for rotations in low-temperature orthorhombic ammonia borane were analyzed and characterized in terms of electronic structure theory. The perdeuterated (11)B-enriched ammonia borane, (11)BD(3)ND(3), sample was synthesized, and the structure was refined from neutron powder diffraction data at 175 K. This temperature has been chosen as median of the range of previously reported nuclear magnetic resonance spectroscopy measurements of these rotations.
View Article and Find Full Text PDFRaman spectra of single crystal ammonia borane, NH3BH3, were recorded as a function of temperature from 88 to 300 K using Raman microscopy and a variable temperature stage. The orthorhombic to orientationally disordered tetragonal phase transition at 225 K was clearly evident from the decrease in the number of vibrational modes. However, some of the modes in the orthorhombic phase appeared to merge 10-12 K below the phase transition perhaps suggesting the presence of an intermediate phase.
View Article and Find Full Text PDF