Background: Sensorimotor beta oscillations are increased in Parkinson's disease (PD) due to the alteration of dopaminergic transmission. This electrophysiological read-out is reported both in patients and in animal models such as the 6-OHDA rat model obtained with unilateral nigral injection of 6-hydroxydopamine (6-OHDA). Current treatments, based on dopaminergic replacement, transiently normalize this pathological beta activity and improve patients' quality of life.
View Article and Find Full Text PDFAim: Darigabat is an α2/3/5 subunit-selective positive allosteric modulator of GABA receptors that has demonstrated broad-spectrum activity in several preclinical models of epilepsy as well as in a clinical photoepilepsy trial. The objective here was to assess the acute antiseizure effect of darigabat in the mesial temporal lobe epilepsy (MTLE) mouse model of drug-resistant focal seizures.
Methods: The MTLE model is generated by single unilateral intrahippocampal injection of low dose (1 nmole) kainic acid in adult mice, and subsequent epileptiform activity is recorded following implantation of a bipolar electrode under general anesthesia.
Background: Cortico-cortical evoked potentials (CCEP) are becoming popular to infer brain connectivity and cortical excitability in implanted refractory epilepsy patients. Our goal was to transfer this methodology to the freely moving rodent.
New Method: CCEP were recorded on freely moving Sprague-Dawley rats, from cortical and subcortical areas using depth electrodes.
Quantitative Electroencephalography (qEEG) and event-related potential (ERP) assessment have emerged as powerful tools to unravel translational biomarkers in preclinical and clinical psychiatric drug discovery trials. The aim of the present study was to compare the GluN2B negative allosteric modulator (NAM) traxoprodil (CP-101,606) with the unselective NMDA receptor channel blocker S-ketamine to give insight into central target engagement and differentiation on multiple EEG readouts. For qEEG recordings telemetric transmitters were implanted in male Wistar rats.
View Article and Find Full Text PDFAim: Antiepileptic drugs that modulate GABA have the potential to aggravate or improve the symptoms of absence epilepsy. PF-06372865 is a positive allosteric modulator (PAM) of α2/3/5 subunit-containing GABA receptors with minimal activity at α1-containing receptors, which are believed to mediate many of the adverse events associated with benzodiazepines. The aim of this study was to assess the antiepileptic effect of PF-06372865 in a preclinical model of absence seizures.
View Article and Find Full Text PDFIn vivo electrophysiological recordings are widely used in neuroscience research, and video-electroencephalography (vEEG) has become a mainstay of preclinical neuroscience research, including studies of epilepsy and cognition. Studies utilizing vEEG typically involve comparison of measurements obtained from different experimental groups, or from the same experimental group at different times, in which one set of measurements serves as "control" and the others as "test" of the variables of interest. Thus, controls provide mainly a reference measurement for the experimental test.
View Article and Find Full Text PDFNeurodegenerative disease are frequently characterized by microglia activation and/or leukocyte infiltration in the parenchyma of the central nervous system and at the molecular level by increased oxidative modifications of proteins, lipids and nucleic acids. NADPH oxidases (NOX) emerged as a novel promising class of pharmacological targets for the treatment of neurodegeneration due to their role in oxidant generation and presumably in regulating microglia activation. The unique function of NOX is the generation of superoxide anion (O) and hydrogen peroxide (HO).
View Article and Find Full Text PDFAmong the different forms of epilepsies, mesiotemporal lobe epilepsy (MTLE) is one of the most common and represents the main pharmaco-resistant form of epilepsy. There is therefore an urgent need to better understand this form of epilepsy to develop better anti-epileptic drugs. Many rodent models are mimicking some aspects of the human temporal lobe epilepsy but only few are addressing most of the human mesiotemporal lobe epilepsy.
View Article and Find Full Text PDFMesiotemporal lobe Epilepsy (MTLE), the most frequent form of focal epilepsy, is often drug-resistant. Enriching the epileptic focus with GABA-releasing engineered cells has been proposed as a strategy to prevent seizures. However, ex vivo data from animal models and MTLE patients suggest that, due to changes in chloride homeostasis, GABA receptor activation is depolarizing and partly responsible for focal interictal discharges and seizure initiation.
View Article and Find Full Text PDFUncovering the molecular mechanisms of mesiotemporal lobe epilepsy (MTLE) is critical to identify therapeutic targets. In this study, we performed global protein expression analysis of a kainic acid (KA) MTLE mouse model at various time-points (1, 3, and 30 days post-KA injection -dpi), representing specific stages of the syndrome. High-resolution liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), in combination with label-free protein quantification using three processing approaches for quantification, was applied.
View Article and Find Full Text PDFAims: Mesial temporal lobe epilepsy (MTLE) is the most common form of drug-refractory epilepsy. Most of the morphological and electrophysiological features of human MTLE can be reproduced in a mouse by a unilateral intrahippocampal injection of kainate (MTLE mouse model). The effects of antiepileptic drugs (AEDs) on the occurrence of recurrent focal hippocampal seizures in this model remain to be specified.
View Article and Find Full Text PDFCajal-Retzius cells play a crucial role during ontogeny in regulating cortical lamination via release of reelin. In adult brain, they comprise small calretinin-positive interneurons located in the marginal zone of the cerebral cortex and in the hippocampal fissure. Alterations of reelin signaling or expression have been involved in major neurological disorders, and they underlie granule cell dispersion (GCD) in mesial temporal lobe epilepsy (TLE).
View Article and Find Full Text PDFPolysialylated neuronal cell adhesion molecule (PSA-NCAM), a polysialylated protein constitutively expressed in the hippocampus, is involved in neuronal growth, synaptic plasticity and neurotrophin signaling. In particular, PSA-NCAM mediates Ret-independent glial-derived neurotrophic factor (GDNF) signaling, leading to downstream FAK activation. GDNF has potent seizure-suppressant action, whereas PSA-NCAM is upregulated by seizure activity.
View Article and Find Full Text PDFThe majority of hippocampal interneurons strongly express GABA(A) receptors containing the alpha1 subunit, suggesting that inhibitory control of interneurons is important for proper function of hippocampal circuits. Here, we investigated with immunohistochemical and electrophysiological techniques how these GABA(A) receptors are replaced in mice carrying a targeted deletion of the alpha1-subunit gene (alpha1(0/0) mice). Using markers of five major populations of CA1 interneurons (parvalbumin, calretinin, calbindin, neuropeptide Y and somatostatin), we show that these interneurons remain unaffected in alpha1(0/0) mice.
View Article and Find Full Text PDFMany mild preconditioning stress conditions, including physical and metabolic injuries, increase the resistance of neurons to subsequent more severe stresses of the same or different type. This "tolerance phenomenon" lasts one to several weeks, providing a unique opportunity to investigate endogenous neuroprotective mechanisms. The aim of this study was to find a physiological and easily applicable preconditioning stimulus able to confer protection against convulsant-induced neuronal damage and seizures.
View Article and Find Full Text PDF