The measures of information transfer which correspond to non-additive entropies have intensively been studied in previous decades. The majority of the work includes the ones belonging to the Sharma-Mittal entropy class, such as the Rényi, the Tsallis, the Landsberg-Vedral and the Gaussian entropies. All of the considerations follow the same approach, mimicking some of the various and mutually equivalent definitions of Shannon information measures, and the information transfer is quantified by an appropriately defined measure of mutual information, while the maximal information transfer is considered as a generalized channel capacity.
View Article and Find Full Text PDFThe class of strongly pseudoadditive (SPA) entropies, which can be represented as an increasing continuous transformation of Shannon and Rényi entropies, have intensively been studied in previous decades. Although their mathematical structure has thoroughly been explored and established by generalized Shannon-Khinchin axioms, the analysis of their thermostatistical properties have mostly been limited to special cases which belong to two parameter Sharma-Mittal entropy class, such as Tsallis, Renyi and Gaussian entropies. In this paper we present a general analysis of the strongly pseudoadditive entropies thermostatistics by taking into account both linear and escort constraints on internal energy.
View Article and Find Full Text PDF