Nanotechnology is rapidly advancing towards the development of applications for sustainable plant growth and photosynthesis optimization. The nanomaterial/plant interaction has been intensively investigated; however, there is still a gap in knowledge regarding their effect on crop seed development and photosynthetic performance. In the present work, we apply a priming procedure with 10 and 50 mg/L Pluronic-P85-grafted single-walled carbon nanotubes (P85-SWCNT) on garden pea seeds and examine the germination, development, and photosynthetic activity of young seedlings grown on soil substrate.
View Article and Find Full Text PDFNatural and synthetic polymers are widely explored for improving seed germination and plant resistance to environmental constraints. Here, for the first time, we explore stabilized nanomicelles composed of the biocompatible triblock co-polymer (SPM) as a priming agent for (var. RAN-1) seeds.
View Article and Find Full Text PDFThe engineering of carbon nanotubes in the last decades resulted in a variety of applications in electronics, electrochemistry, and biomedicine. A number of reports also evidenced their valuable application in agriculture as plant growth regulators and nanocarriers. In this work, we explored the effect of seed priming with single-walled carbon nanotubes grafted with Pluronic P85 polymer (denoted P85-SWCNT) on (var.
View Article and Find Full Text PDFAllelopathic interactions are widespread in all aquatic habitats, among all groups of aquatic primary biomass producers, including cyanobacteria. Cyanobacteria are producers of potent toxins called cyanotoxins, whose biological and ecological roles, including their allelopathic influence, are still incompletely understood. The allelopathic potential of the cyanotoxins microcystin-LR (MC-LR) and cylindrospermopsin (CYL) on green algae (, , and ) was established.
View Article and Find Full Text PDFIsoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate.
View Article and Find Full Text PDFPhotolytic generation of nitric oxide (NO), isoprene, and reactive oxygen species (ROS) pre-dated life on Earth (~4 billion years ago). However, isoprene-ROS-NO interactions became relevant to climate chemistry ~50 million years ago, after aquatic and terrestrial ecosystems became dominated by isoprene-emitting diatoms and angiosperms. Today, NO and NO2 (together referred to as NOx) are dangerous biogenic gaseous atmospheric pollutants.
View Article and Find Full Text PDFL. is a crop selected for cultivation in Space for its nutritional properties. However, exposure to ionizing radiation (IR) can alter plant photosynthetic performance and phytochemical production in the extraterrestrial environment.
View Article and Find Full Text PDFLight quality plays an essential role in setting plant structural and functional traits, including antioxidant compounds. This paper aimed to assess how manipulating the light spectrum during growth may regulate the photosynthetic activity and fruit bioactive compound synthesis in L. cv.
View Article and Find Full Text PDFThe evolution of plastic responses to external cues allows species to maintain fitness in response to the environmental variations they regularly experience. However, it remains unclear how plasticity evolves during adaptation. To test whether distinct patterns of plasticity are associated with adaptive divergence, we quantified plasticity for two closely related but ecologically divergent Sicilian daisy species (Senecio, Asteraceae).
View Article and Find Full Text PDFAlterations in photosynthetic performance of lutein-deficient mutant and wild type (wt) of were followed after treatment with low temperature and high light for 6 d. The obtained results indicated lower electrolyte leakage, lower excitation pressure, and higher actual photochemical efficiency of PSII in plants exposed to combined stress compared to wt plants. This implies that is less susceptible to the applied stress conditions.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNT) have recently been attracting the attention of plant biologists as a prospective tool for modulation of photosynthesis in higher plants. However, the exact mode of action of SWCNT on the photosynthetic electron transport chain remains unknown. In this work, we examined the effect of foliar application of polymer-grafted SWCNT on the donor side of photosystem II, the intersystem electron transfer chain and the acceptor side of photosystem I.
View Article and Find Full Text PDFThis study evaluated if specific light quality (LQ) regimes (white fluorescent, FL; full-spectrum, FS; red-blue, RB) during plant growth modified morphological and photosynthetic traits of L. 'Microtom' plants irradiated at the dry seed stage with 25 Gy Ca ions (IR). The irradiation reduced plant size while it increased leaf dry matter content (LDMC) and relative water content (RWC) compared to the control.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNTs) emerge as promising novel carbon-based nanoparticles for use in biomedicine, pharmacology and precision agriculture. They were shown to penetrate cell walls and membranes and to physically interact and exchange electrons with photosynthetic complexes in vitro. Here, for the first time, we studied the concentration-dependent effect of foliar application of copolymer-grafted SWCNTs on the structural and functional characteristics of intact pea plants.
View Article and Find Full Text PDFThis paper evaluates the combined effect of biostimulant and light quality on bioactive compound production and seedling growth of soybean ( L. Merrill) plants. Germinated seeds pre-treated with different concentrations (0.
View Article and Find Full Text PDFRecent studies have demonstrated that exogenous polyamines have protective effects under various stress condition. A broader understanding of the role of the polyamine pool fine regulation and the alterations of polyamine-related physiological processes could be obtained by comparing the stress effects in different genotypes. In this study, the impact of pre-treatment with putrescine in response to osmotic stress was investigated in the drought-tolerant Katya and drought-sensitive Zora wheat (Triticum aestivum) cultivars.
View Article and Find Full Text PDFIn the context of climatic change, more severe and long-lasting droughts will modify the fitness of plants, with potentially worse consequences on the relict trees. We have investigated the leaf phenotypic (anatomical, physiological and biochemical) plasticity in well-watered, drought-stressed and re-watered plants of two populations of , an endangered species in the west of the Mediterranean area. The two populations originated in contrasting climate (drier and warmer, Italy (IT) population; more humid and colder, Bulgaria (BG) population).
View Article and Find Full Text PDFcovers a very fragmented area in Europe and, at the edge of its natural distribution, is considered a relic endangered species near extinction. In our study, it was hypothesized that individuals from the edge of the habitat, with stronger climate constrains (drier and warmer environment, Italy, IT ecotype), developed different mechanisms of adaptation than those growing under optimal conditions at the center of the habitat (more humid and colder environment, Bulgaria, BG ecotype). Indeed, the two ecotypes displayed physiological, structural and functional differences already under control (unstressed) conditions.
View Article and Find Full Text PDFIsoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L.
View Article and Find Full Text PDFArundo donax has been identified as an important biomass and biofuel crop. Yet, there has been little research on photosynthetic and metabolic traits, which sustain the high productivity of A. donax under drought conditions.
View Article and Find Full Text PDFParticulate matter (PM) deposited on Platanus acerifolia tree leaves has been sampled in the urban areas of 28 European cities, over 20 countries, with the aim of testing leaf deposited particles as indicator of atmospheric PM concentration and composition. Leaves have been collected close to streets characterized by heavy traffic and within urban parks. Leaf surface density, dimensions, and elemental composition of leaf deposited particles have been compared with leaf magnetic content, and discussed in connection with air quality data.
View Article and Find Full Text PDFPhysiological, biochemical and morpho-anatomical traits that determine the phenotypic plasticity of plants under drought were tested in two Arundinoideae with contrasting habitats, growth traits and metabolism: the fast-growing Arundo donax, which also is a strong isoprene emitter, and the slow-growing Hakonechloa macra that does not invest on isoprene biosynthesis. In control conditions, A. donax displayed not only higher photosynthesis but also higher concentration of carotenoids and lower phenylpropanoid content than H.
View Article and Find Full Text PDFBackground: Arundo donax L. (Poaceae) is considered one of the most promising energy crops in the Mediterranean region because of its high biomass yield and low input requirements, but to date no information on its transcriptional responses to water stress is available.
Results: We obtained by Illumina-based RNA-seq the whole root and shoot transcriptomes of young A.
Researchers have been examining the biological function(s) of isoprene in isoprene-emitting (IE) species for two decades. There is overwhelming evidence that leaf-internal isoprene increases the thermotolerance of plants and protects them against oxidative stress, thus mitigating a wide range of abiotic stresses. However, the mechanisms of abiotic stress mitigation by isoprene are still under debate.
View Article and Find Full Text PDF