Publications by authors named "Velia Fowler"

Mammalian red blood cells are generated via a terminal erythroid differentiation pathway culminating in cell polarization and enucleation. Actin filament polymerization is critical for enucleation, but the molecular regulatory mechanisms remain poorly understood. We utilized publicly available RNA-seq and proteomics datasets to mine for actin-binding proteins and actin-nucleation factors differentially expressed during human erythroid differentiation and discovered that a focal adhesion protein-Tensin-1-dramatically increases in expression late in differentiation.

View Article and Find Full Text PDF

Actin is an essential component of the cytoskeleton in every eukaryotic cell. Cytoplasmic β-and γ-actin are over 99% identical to each other at the protein level, but are encoded by different genes and play distinct roles in vivo. Blood cells, especially red blood cells (RBC), contain almost exclusively β-actin, and it has been generally assumed that this bias is dictated by unique suitability of β-actin for RBC cytoskeleton function due to its specific amino acid sequence.

View Article and Find Full Text PDF

Osteocytes, the most abundant bone cells, form an extensive cellular network via interconnecting dendrites. Like neurons in the brain, the long-lived osteocytes perceive mechanical and biological inputs and signal to other effector cells, leading to the homeostasis and turnover of bone tissues. Despite the appreciation of osteocytes' vital roles in bone biology, the initiation, growth, maintenance, and eventual degradation of osteocyte dendrites are poorly understood due to their full encasement by mineralized matrix.

View Article and Find Full Text PDF

Erythroid enucleation, the penultimate step in mammalian erythroid terminal differentiation, is a unique cellular process by which red blood cells (erythrocytes) remove their nucleus and accompanying nuclear material. This complex, multi-stage event begins with chromatin compaction and cell cycle arrest and ends with generation of two daughter cells: a pyrenocyte, which contains the expelled nucleus, and an anucleate reticulocyte, which matures into an erythrocyte. Although enucleation has been compared to asymmetric cell division (ACD), many mechanistic hallmarks of ACD appear to be absent.

View Article and Find Full Text PDF

The mouse ocular lens is an excellent vertebrate model system for studying hexagonal cell packing and shape changes during tissue morphogenesis and differentiation. The lens is composed of two types of cells, epithelial and fiber cells. During the initiation of fiber cell differentiation, lens epithelial cells transform from randomly packed cells to hexagonally shaped and packed cells to form meridional row cells.

View Article and Find Full Text PDF

The ocular lens is a transparent flexible tissue that alters its shape to focus light from different distances onto the retina. Aside from a basement membrane surrounding the organ, called the capsule, the lens is entirely cellular consisting of a monolayer of epithelial cells on the anterior hemisphere and a bulk mass of lens fiber cells. Throughout life, epithelial cells proliferate in the germinative zone at the lens equator, and equatorial epithelial cells migrate, elongate, and differentiate into newly formed fiber cells.

View Article and Find Full Text PDF

Familial cardiomyopathy in pediatric stages is a poorly understood presentation of heart disease in children that is attributed to pathogenic mutations. Through exome sequencing, we report a homozygous variant in tropomodulin 1 (TMOD1; c.565C>T, p.

View Article and Find Full Text PDF

Purpose: Epithelial cells in the equatorial region of the ocular lens undergo a remarkable transition from randomly packed cells into precisely aligned and hexagon-shaped cells organized into meridional rows. We investigated the function of nonmuscle myosin IIA (encoded by Myh9) in regulating equatorial epithelial cell alignment to form meridional rows during secondary fiber cell morphogenesis.

Methods: We used genetic knock-in mice to study a common human Myh9 mutation, E1841K, in the rod domain.

View Article and Find Full Text PDF

Actin, spectrin, and associated molecules form a membrane-associated periodic skeleton (MPS) in neurons. The molecular composition and functions of the MPS remain incompletely understood. Here, using co-immunoprecipitation and mass spectrometry, we identified hundreds of potential candidate MPS-interacting proteins that span diverse functional categories.

View Article and Find Full Text PDF

Erythroid differentiation (ED) is a complex cellular process entailing morphologically distinct maturation stages of erythroblasts during terminal differentiation. Studies of actin filament (F-actin) assembly and organization during terminal ED have revealed essential roles for the F-actin pointed-end capping proteins, tropomodulins (Tmod1 and Tmod3). Tmods bind tropomyosins (Tpms), which enhance Tmod capping and F-actin stabilization.

View Article and Find Full Text PDF

Red blood cell (RBC) shape and deformability are supported by a planar network of short actin filament (F-actin) nodes (∼37 nm length, 15-18 subunits) interconnected by long spectrin strands at the inner surface of the plasma membrane. Spectrin-F-actin network structure underlies quantitative modeling of forces controlling RBC shape, membrane curvature, and deformation, yet the nanoscale organization and dynamics of the F-actin nodes in situ are not well understood. We examined F-actin distribution and dynamics in RBCs using fluorescent-phalloidin labeling of F-actin imaged by multiple microscopy modalities.

View Article and Find Full Text PDF

Arit Ghosh and Velia Fowler introduce the structural features and functions of tropomodulins - actin-binding proteins that cap the slow-growing (pointed) ends of actin filaments.

View Article and Find Full Text PDF

Mammalian red blood cells (RBCs), which primarily contain hemoglobin, exemplify an elaborate maturation process, with the terminal steps of RBC generation involving extensive cellular remodeling. This encompasses alterations of cellular content through distinct stages of erythroblast maturation that result in the expulsion of the nucleus (enucleation) followed by the loss of mitochondria and all other organelles and a transition to anaerobic glycolysis. Whether there is any link between erythroid removal of the nucleus and the function of any other organelle, including mitochondria, remains unknown.

View Article and Find Full Text PDF

Purpose: Epithelial to mesenchymal transition (EMT) is a cause of anterior and posterior subcapsular cataracts. Central to EMT is the formation of actin stress fibers. Selective targeting of actin stress fiber-associated tropomyosin (Tpm) in epithelial cells may be a means to prevent stress fiber formation and repress lens EMT.

View Article and Find Full Text PDF

The biconcave disk shape of the mammalian red blood cell (RBC) is unique to the RBC and is vital for its circulatory function. Due to the absence of a transcellular cytoskeleton, RBC shape is determined by the membrane skeleton, a network of actin filaments cross-linked by spectrin and attached to membrane proteins. While the physical properties of a uniformly distributed actin network interacting with the lipid bilayer membrane have been assumed to control RBC shape, recent experiments reveal that RBC biconcave shape also depends on the contractile activity of nonmuscle myosin IIA (NMIIA) motor proteins.

View Article and Find Full Text PDF

Mutations of the RNA granule component TDRD7 (OMIM: 611258) cause pediatric cataract. We applied an integrated approach to uncover the molecular pathology of cataract in Tdrd7-/- mice. Early postnatal Tdrd7-/- animals precipitously develop cataract suggesting a global-level breakdown/misregulation of key cellular processes.

View Article and Find Full Text PDF

Megakaryocytes (MKs), the precursor cells for platelets, migrate from the endosteal niche of the bone marrow (BM) toward the vasculature, extending proplatelets into sinusoids, where circulating blood progressively fragments them into platelets. Nonmuscle myosin IIA (NMIIA) heavy chain gene (MYH9) mutations cause macrothrombocytopenia characterized by fewer platelets with larger sizes leading to clotting disorders termed myosin-9-related disorders (MYH9-RDs). MYH9-RD patient MKs have proplatelets with thicker and fewer branches that produce fewer and larger proplatelets, which is phenocopied in mouse Myh9-RD models.

View Article and Find Full Text PDF

Life-long eye lens function requires an appropriate gradient refractive index, biomechanical integrity and transparency. We conducted an extensive study of wild-type mouse lenses 1-30 months of age to define common age-related changes. Biomechanical testing and morphometrics revealed an increase in lens volume and stiffness with age.

View Article and Find Full Text PDF

MYH9-related disease (MYH9-RD) is a rare, autosomal dominant disorder caused by mutations in MYH9, the gene encoding the actin-activated motor protein non-muscle myosin IIA (NMIIA). MYH9-RD patients suffer from bleeding syndromes, progressive kidney disease, deafness, and/or cataracts, but the impact of MYH9 mutations on other NMIIA-expressing tissues remains unknown. In human red blood cells (RBCs), NMIIA assembles into bipolar filaments and binds to actin filaments (F-actin) in the spectrin-F-actin membrane skeleton to control RBC biconcave disk shape and deformability.

View Article and Find Full Text PDF

Tropomodulins (Tmods) are proteins that cap the slow-growing (pointed) ends of actin filaments (F-actin). The basis for our current understanding of Tmod function comes from studies in cells with relatively stable and highly organized F-actin networks, leading to the view that Tmod capping functions principally to preserve F-actin stability. However, not only is Tmod capping dynamic, but it also can play major roles in regulating diverse cellular processes involving F-actin remodeling.

View Article and Find Full Text PDF

Epithelial cells and differentiated fiber cells represent distinct compartments in the ocular lens. While previous studies have revealed proteins that are preferentially expressed in epithelial vs. fiber cells, a comprehensive proteomics library comparing the molecular compositions of epithelial vs.

View Article and Find Full Text PDF

Tropomyosins (Tpms) stabilize F-actin and regulate interactions with other actin-binding proteins. The eye lens changes shape in order to focus light to transmit a clear image, and thus lens organ function is tied to its biomechanical properties, presenting an opportunity to study Tpm functions in tissue mechanics. Mouse lenses contain Tpm3.

View Article and Find Full Text PDF

Neurons of the CNS elaborate highly branched dendritic arbors that host numerous dendritic spines, which serve as the postsynaptic platform for most excitatory synapses. The actin cytoskeleton plays an important role in dendrite development and spine formation, but the underlying mechanisms remain incompletely understood. Tropomodulins (Tmods) are a family of actin-binding proteins that cap the slow-growing (pointed) end of actin filaments, thereby regulating the stability, length, and architecture of complex actin networks in diverse cell types.

View Article and Find Full Text PDF

The mouse eye lens was used as a model for multiscale transfer of loads. In the lens, compressive strain is distributed across specific lens tissue microstructures, including the extracellular capsule, as well as the epithelial and fiber cells. The removal of high loads resulted in complete recovery of most, but not all, microstructures.

View Article and Find Full Text PDF