Chondrosarcoma is one of the most common bone tumors, and at present, there is no non-invasive treatment option for this cancer. The chondrosarcoma OUMS-27 cell line produces proteoglycan and type II, IX, and XI collagens, which constitutes cartilage tissue. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteases are a group of secreted proteases, which include the procollagen N-proteinases ADAMTS-2, -3 and -14.
View Article and Find Full Text PDFCancer Biother Radiopharm
August 2015
Objectives: A disintegrin-like metalloproteinase with thrombospondin motifs (ADAMTS) is a group of proteins that have enzymatic activity secreted by cells to the outside extracellular matrix. Insulin induces proteoglycan biosynthesis in chondrosarcoma chondrocytes. The purpose of the present in vitro study is to assess the time course effects of insulin on ADAMTS16 expression in OUMS-27 (human chondrosarcoma) cell line to examine whether insulin regulates ADAMTS16 expression as well as proteoglycan biosynthesis with multifaceted properties or not.
View Article and Find Full Text PDFNuclear factor-κB (NF-κB) is involved in the regulation of inflammation‑associated genes. NF-κB forms dimers which bind with sequences referred to as NF-κB sites (9-11 bp). A disintegrin-like and metalloproteinase with thrombospondin type 1 motif 9 (ADAMTS9) is a type of proteoglycanase, which proteolytically cleaves versican and aggrecan.
View Article and Find Full Text PDFThe chondroitin sulfate proteoglycans (CSPGs) aggrecan, versican, and brevican are large aggregating extracellular matrix molecules that inhibit axonal growth of the mature central nervous system (CNS). ADAMTS proteoglycanases, including ADAMTS4 and ADAMTS5, degrade CSPGs, representing potential targets for ameliorating axonal growth-inhibition by CSPG accumulation after CNS injury. We investigated the proteolysis of CSPGs in mice homozygous for Adamts4 or Adamts5 null alleles after spinal cord injury (SCI).
View Article and Find Full Text PDFJ Ocul Pharmacol Ther
November 2014
As an effective compound found mainly in the honeybee product propolis, caffeic acid phenethyl ester (CAPE) has been commonly utilized as a medicine and remedial agent, in a number of countries. Specifically, it might inhibit nuclear factor kappa B at micromolar concentrations and demonstrate antioxidant, antineoplastic, antiproliferative, cytostatic, antiviral, antibacterial, antifungal, and anti-inflammatory features. This review article summarizes the recent progress regarding the favorable effects of CAPE on a number of eye disease models, including cataract and posterior capsule opacification, corneal diseases, retina and optic nerve-related diseases, ischemia/reperfusion injury of retina, inflammation and infection-related diseases.
View Article and Find Full Text PDFCaffeic acid phenethyl ester (CAPE), an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury after ischemia/reperfusion (I/R). In this review, we summarized and critically evaluated the current knowledge regarding the protective effect of CAPE in nephrotoxicity induced by several special medicines such as cisplatin, doxorubicin, cyclosporine, gentamycin, methotrexate, and other causes leading to oxidative renal injury, namely, I/R models and senility.
View Article and Find Full Text PDF