Indirect methods for reference interval (RI) estimation, which use data acquired from routine pathology testing, have the potential to accelerate the establishment of RIs to account for variables such as gender and age to improve clinical assessments. However, they require more sophisticated methods of analysis due to the potential influence of pathological patients in raw clinical datasets. In this paper we develop a novel convolutional neural network (CNN) model trained on synthetic data to identify underlying healthy distributions within pathological admixtures.
View Article and Find Full Text PDFReference intervals (RIs) for clinical laboratory values are extremely important for diagnostics and treatment of patients. However, the determination of these ranges is costly and time-consuming. As a result, often different unverified RIs are used in practice for the same analyte and the same range is used for all patients despite evidence that the values are gender, age, and ethnicity dependent.
View Article and Find Full Text PDFBiomolecular networks have already found great utility in characterizing complex biological systems arising from pairwise interactions amongst biomolecules. Here, we explore the important and hitherto neglected role of information asymmetry in the genesis and evolution of such pairwise biomolecular interactions. Information asymmetry between sender and receiver genes is identified as a key feature distinguishing early biochemical reactions from abiotic chemistry, and a driver of network topology as biomolecular systems become more complex.
View Article and Find Full Text PDFUsing model calculations, we demonstrate a very high level of control of the spin-transfer torque (STT) by electric field in multiferroic tunnel junctions with composite dielectric/ferroelectric barriers. We find that, for particular device parameters, toggling the polarization direction can switch the voltage-induced part of STT between a finite value and a value close to zero, i.e.
View Article and Find Full Text PDFWe have investigated the electronic transport and the anisotropic magnetoresistance in systems consisting of pairs of antiferromagnetically aligned layers separated by a non-magnetic layer, across which an antiferromagnetic coupling between the double layers is established. Calculations have been performed within the framework of the tight-binding model, taking into account the exchange coupling within the ferromagnetic layers and the Rashba spin-orbit interaction. Conductivities have been evaluated in the ballistic regime, based on Kubo formula.
View Article and Find Full Text PDFTopological insulators are very interesting from a fundamental point of view, and their unique properties may be useful for electronic and spintronic device applications. From the point of view of applications it is important to understand the decay behavior of carriers injected in the band gap of the topological insulator, which is determined by its complex band structure (CBS). Using first-principles calculations, we investigate the dispersion and symmetry of the complex bands of Bi2Se3 family of three-dimensional topological insulators.
View Article and Find Full Text PDFNanopore DNA sequencing via transverse current has emerged as a promising candidate for third-generation sequencing technology. It produces long read lengths which could alleviate problems with assembly errors inherent in current technologies. However, the high error rates of nanopore sequencing have to be addressed.
View Article and Find Full Text PDFThe transport properties of magnetic tunnel junctions (MTJs) are very sensitive to interface modifications. In this work we investigate both experimentally and theoretically the effect of asymmetric barrier modifications on the bias dependence of tunneling magnetoresistance (TMR) in single crystal Fe/MgO-based MTJs with (i) one crystalline and one rough interface, and (ii) with a monolayer of O deposited at the crystalline interface. In both cases we observe an asymmetric bias dependence of TMR and a reversal of its sign at large bias.
View Article and Find Full Text PDFElectric field control of magnetization is one of the promising avenues for achieving high-density energy-efficient magnetic data storage. Ferroelectric materials can be especially useful for that purpose as a source of very large switchable electric fields when interfaced with a ferromagnet. Organic ferroelectrics, such as poly(vinylidene fluoride) (PVDF), have an additional advantage of being weakly bonded to the ferromagnet, thus minimizing undesirable effects such as interface chemical modification and/or strain coupling.
View Article and Find Full Text PDFPhys Status Solidi B Basic Solid State Phys
August 2012
There is compelling evidence of electron pockets, at the Fermi level, in the band structure for an organic zwitterion molecule of the -benzoquinonemonoimine type. The electronic structure of the zwitterion molecular film has a definite, although small, density of states evident at the Fermi level as well as a nonzero inner potential and thus is very different from a true insulator. In spite of a small Brillouin zone, significant band width is observed in the intermolecular band dispersion.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
August 2011
The existence of multiple ferroic orders in the same material and the coupling between them have been known for decades. However, these phenomena have mostly remained the theoretical domain owing to the fact that in single-phase materials such couplings are rare and weak. This situation has changed dramatically recently for at least two reasons: first, advances in materials fabrication have made it possible to manufacture these materials in structures of lower dimensionality, such as thin films or wires, or in compound structures such as laminates and epitaxial-layered heterostructures.
View Article and Find Full Text PDFOrganic materials are promising for applications in spintronics due to their long spin-relaxation times in addition to their chemical flexibility and relatively low production costs. Most studies of organic materials for spintronics focus on nonpolar dielectrics or semiconductors, serving as passive elements in spin transport devices. Here, we demonstrate that employing organic ferroelectrics, such as poly(vinylidene fluoride) (PVDF), as barriers in magnetic tunnel junctions (MTJs) allows new functionality in controlling the tunneling spin polarization via the ferroelectric polarization of the barrier.
View Article and Find Full Text PDFWe perform density functional calculations to understand the mechanism controlling the confinement width of the two-dimensional electron gas (2DEG) at LaAlO_{3}/SrTiO_{3} interfaces. We find that the 2DEG confinement can be explained by the formation of metal induced gap states (MIGS) in the band gap of SrTiO3. These states are formed as the result of quantum-mechanical tunneling of the charge created at the interface due to electronic reconstruction.
View Article and Find Full Text PDFMagnetic tunnel junctions (MTJs), composed of two ferromagnetic electrodes separated by a thin insulating barrier layer, are currently used in spintronic devices, such as magnetic sensors and magnetic random access memories. Recently, driven by demonstrations of ferroelectricity at the nanoscale, thin-film ferroelectric barriers were proposed to extend the functionality of MTJs. Due to the sensitivity of conductance to the magnetization alignment of the electrodes (tunneling magnetoresistance) and the polarization orientation in the ferroelectric barrier (tunneling electroresistance), these multiferroic tunnel junctions (MFTJs) may serve as four-state resistance devices.
View Article and Find Full Text PDFA surface magnetoelectric effect is revealed by density-functional calculations that are applied to ferromagnetic Fe(001), Ni(001), and Co(0001) films in the presence of an external electric field. The effect originates from spin-dependent screening of the electric field which leads to notable changes in the surface magnetization and the surface magnetocrystalline anisotropy. These results are of considerable interest in the area of electrically controlled magnetism and magnetoelectric phenomena.
View Article and Find Full Text PDFBased on first-principles calculations, we demonstrate the impact of the electric polarization on electron transport in ferroelectric tunnel junctions (FTJs). Using a Pt/BaTiO3/Pt FTJ as a model system, we show that the polarization of the BaTiO3 barrier leads to a substantial drop in the tunneling conductance due to changes in the electronic structure driven by ferroelectric displacements. We find a sizable change in the transmission probability across the Pt/BaTiO3 interface with polarization reversal, a signature of the electroresistance effect.
View Article and Find Full Text PDFWe perform an ab initio study of spin-polarized tunneling in epitaxial Co/SrTiO(3)/Co magnetic tunnel junctions with bcc Co(001) electrodes. We predict a large tunneling magnetoresistance in these junctions, originating from a mismatch in the majority- and minority-spin bands both in bulk bcc Co and at the Co/SrTiO(3)/Co interface. The intricate complex band structure of SrTiO(3) enables efficient tunneling of the minority d electrons which causes the spin polarization of the Co/SrTiO(3)/Co interface to be negative in agreement with experimental data.
View Article and Find Full Text PDFElectronic transport in ferromagnetic ballistic conductors is predicted to exhibit ballistic anisotropic magnetoresistance-a change in the ballistic conductance with the direction of magnetization. This phenomenon originates from the effect of the spin-orbit interaction on the electronic band structure which leads to a change in the number of bands crossing the Fermi energy when the magnetization direction changes. We illustrate the significance of this phenomenon by performing ab initio calculations of the ballistic conductance in ferromagnetic Ni and Fe nanowires which display a sizable ballistic anisotropic magnetoresistance when magnetization changes direction from parallel to perpendicular to the wire axis.
View Article and Find Full Text PDF