Publications by authors named "Velazquez-Villegas L"

Background And Aims: Both obesity and iron deficiency are public health problems. The association between the two problems could be explained by chronic low-grade inflammation in obesity, which could stimulate hepcidin expression and modify iron concentration that the consumption of high-protein diets could prevent. Thus, this study aimed to compare the effects of high-protein diets with a predominance of animal or vegetable protein on serum hepcidin and iron concentrations in adults with obesity.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the TATA-binding protein (TBP) gene in *Taenia solium*, revealing the presence of transcription factor binding sites and two TATA-like elements in its promoter, which do not bind TBP.
  • - Researchers identified key elements important for gene expression, such as the transcription start site and a downstream promoter element (DPE), and confirmed the expression of TBP-Associated Factors TsTAF6 and TsTAF9 in the parasite.
  • - Molecular dynamics simulations provided insights into how TsTAF6 and TsTAF9 interact with the DPE probe, leading to a proposed interaction model that underscores their novel role in regulating transcription in *T. solium*.
View Article and Find Full Text PDF

The post-nutritional intervention modulation of miRNA expression has been previously investigated; however, post-acute dietary-ingestion-related miRNA expression dynamics in individuals with obesity and insulin resistance (IR) are unknown. We aimed to determine the acute effects of protein ingestion from different dietary sources on the postprandial metabolic response, amino acid levels, and circulating miRNA expression in adults with obesity and IR. This clinical trial included adults with obesity and IR who consumed (1) animal-source protein (AP; calcium caseinate) or (2) vegetable-source protein (VP; soy protein isolate).

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction occurs in monocytes during obesity and contributes to a low-grade inflammatory state; therefore, maintaining good mitochondrial conditions is a key aspect of maintaining health. Dietary interventions are primary strategies for treating obesity, but little is known about their impact on monocyte bioenergetics. Thus, the aim of this study was to evaluate the effects of calorie restriction (CR), intermittent fasting (IF), a ketogenic diet (KD), and an ad libitum habitual diet (AL) on mitochondrial function in monocytes and its modulation by the gut microbiota.

View Article and Find Full Text PDF

Immune mediators affect multiple biological functions of intestinal epithelial cells (IECs) and, like Paneth and Paneth-like cells, play an important role in intestinal epithelial homeostasis. IFN-γ a prototypical proinflammatory cytokine disrupts intestinal epithelial homeostasis. However, the mechanism underlying the process remains unknown.

View Article and Find Full Text PDF

Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups.

View Article and Find Full Text PDF

Excessive consumption of fat and carbohydrates, together with a decrease in traditional food intake, has been related to obesity and the development of metabolic alterations. Ramon seed is a traditional Mayan food used to obtain Ramon flour (RF) with high biological value in terms of protein, fiber, micronutrients, and bioactive compounds such as polyphenols. However, few studies have evaluated the beneficial effects of RF.

View Article and Find Full Text PDF

Amino acids have been extensively studied in nutrition, mainly as key elements for maintaining optimal protein synthesis in the body as well as precursors of various nitrogen-containing compounds. However, it is now known that amino acid catabolism is an important element for the metabolic control of different biological processes, although it is still a developing field to have a deeper understanding of its biological implications. The mechanisms involved in the regulation of amino acid catabolism now include the contribution of the gut microbiota to amino acid oxidation and metabolite generation in the intestine, the molecular mechanisms of transcriptional control, and the participation of specific miRNAs involved in the regulation of amino acid degrading enzymes.

View Article and Find Full Text PDF

Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled.

View Article and Find Full Text PDF

The circadian clock is an endogenous time-tracking system that anticipates daily environmental changes. Misalignment of the clock can cause obesity, which is accompanied by reduced levels of the clock-controlled, rhythmic metabolite NAD. Increasing NAD is becoming a therapy for metabolic dysfunction; however, the impact of daily NAD fluctuations remains unknown.

View Article and Find Full Text PDF

Hypothalamic circuits compute systemic information to control metabolism. Astrocytes residing within the hypothalamus directly sense nutrients and hormones, integrating metabolic information, and modulating neuronal responses. Nevertheless, the role of the astrocytic circadian clock on the control of energy balance remains unclear.

View Article and Find Full Text PDF

Bile acids (BAs) are complex and incompletely understood enterohepatic-derived hormones that control whole-body metabolism. Here, we profiled postprandial BAs in the liver, feces, and plasma of 360 chow- or high-fat-diet-fed BXD male mice and demonstrated that both genetics and diet strongly influence BA abundance, composition, and correlation with metabolic traits. Through an integrated systems approach, we mapped hundreds of quantitative trait loci that modulate BAs and identified both known and unknown regulators of BA homeostasis.

View Article and Find Full Text PDF

Scope: Genistein increases whole body energy expenditure by stimulating white adipose tissue (WAT) browning and thermogenesis. G-Coupled receptor GPR30 can mediate some actions of genistein, however, it is not known whether it is involved in the activation of WAT-thermogenesis. Thus, the aim of the study is to determine whether genistein activates thermogenesis coupled to an increase in WAT browning and mitochondrial activity, in GPR30 and GPR30 mice.

View Article and Find Full Text PDF

Bile acids (BAs) are signalling molecules that mediate various cellular responses in both physiological and pathological processes. Several studies report that BAs can be detected in the brain, yet their physiological role in the central nervous system is still largely unknown. Here we show that postprandial BAs can reach the brain and activate a negative-feedback loop controlling satiety in response to physiological feeding via TGR5, a G-protein-coupled receptor activated by multiple conjugated and unconjugated BAs and an established regulator of peripheral metabolism.

View Article and Find Full Text PDF

The increase in incidence and prevalence of metabolic diseases, such as diabetes, obesity, and metabolic syndrome, is a health problem worldwide. Nutritional strategies that can impact on mitochondrial activity represent a novel and effective option to modulate energy expenditure and energetic metabolism in cells and tissues and could be used as adjuvant treatments for metabolic-associated disorders. Dietary bioactive compounds also known as "food bioactives" have proven to exert multiple health benefits and counteract metabolic alterations.

View Article and Find Full Text PDF

SIRT7 is a NAD -dependent deacetylase that controls important aspects of metabolism, cancer, and bone formation. However, the molecular targets and functions of SIRT7 in the kidney are currently unknown. In silico analysis of kidney transcripts of the BXD murine genetic reference population revealed a positive correlation between Sirt7 and Slc12a7 mRNA expression, suggesting a link between the corresponding proteins that these transcripts encode, SIRT7, and the K-Cl cotransporter KCC4, respectively.

View Article and Find Full Text PDF

The preservation of body proteins is essential to guarantee their functions in organisms. Therefore, the utilization of amino acids as energy substrates is regulated by a precise fine-tuned mechanism. Recent evidence suggests that the transcription factors peroxisome proliferator-activated receptor alpha (PPARα) and hepatocyte nuclear factor 4 alpha (HNF4α) are involved in this regulatory mechanism.

View Article and Find Full Text PDF

Carbohydrate responsive element-binding protein (ChREBP) has been identified as a primary transcription factor that maintains energy homeostasis through transcriptional regulation of glycolytic, lipogenic, and gluconeogenic enzymes in response to a high-carbohydrate diet. Amino acids are important substrates for gluconeogenesis, but nevertheless, knowledge is lacking about whether this transcription factor regulates genes involved in the transport or use of these metabolites. Here, we demonstrate that ChREBP represses the expression of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) in response to a high-sucrose diet in rats by binding to a carbohydrate response element (ChoRE) site located -160 bp upstream of the transcriptional start site in the SNAT2 promoter region.

View Article and Find Full Text PDF

Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.

View Article and Find Full Text PDF

White adipose tissue (WAT) can differentiate into beige adipose tissue by the browning process. Some polyphenols, including isoflavones, particularly genistein, are suggested to increase the expression of browning markers. There is evidence that consumption of genistein can attenuate body weight gain and improve glucose tolerance and blood lipid levels.

View Article and Find Full Text PDF

Scope: The aim of this study is to assess whether the long-term addition of genistein to a high-fat diet can ameliorate the metabolic and the cognitive alterations and whether the changes can be associated with modifications to the gut microbiota.

Methods And Results: C57/BL6 mice were fed either a control (C) diet, a high-fat (HF) diet, or a high-fat diet containing genistein (HFG) for 6 months. During the study, indirect calorimetry, IP glucose tolerance tests, and behavioral analyses were performed.

View Article and Find Full Text PDF

Remodelling of energy storing white fat into energy expending beige fat could be a promising strategy to reduce adiposity. Here, we show that the bile acid-responsive membrane receptor TGR5 mediates beiging of the subcutaneous white adipose tissue (scWAT) under multiple environmental cues including cold exposure and prolonged high-fat diet feeding. Moreover, administration of TGR5-selective bile acid mimetics to thermoneutral housed mice leads to the appearance of beige adipocyte markers and increases mitochondrial content in the scWAT of Tgr5 mice but not in their Tgr5 littermates.

View Article and Find Full Text PDF

Identifying genetic and environmental factors that impact complex traits and common diseases is a high biomedical priority. Here, we developed, validated, and implemented a series of multi-layered systems approaches, including (expression-based) phenome-wide association, transcriptome-/proteome-wide association, and (reverse-) mediation analysis, in an open-access web server (systems-genetics.org) to expedite the systems dissection of gene function.

View Article and Find Full Text PDF

Scope: Hyperglucagonemia contributes to hyperglycemia in type 2 diabetes (T2D). Previously, we have found that soy protein normalized fasting hyperglucagonemia in obese Zucker (fa/fa) rats, sensitizing the HSL-lipolytic signaling pathway in white adipose tissue (WAT), however the mechanism remains unknown.

Methods And Results: Zucker (fa/fa) rats were fed casein or soy protein diet in combination with soybean or coconut oil.

View Article and Find Full Text PDF