The application of partial nitritation-anammox (PN/A) under mainstream conditions can enable substantial cost savings at wastewater treatment plants (WWTPs), but how process conditions and cell physiology affect anammox performance at psychrophilic temperatures below 15 °C remains poorly understood. We tested 14 anammox communities, including 8 from globally-installed PN/A processes, for (i) specific activity at 10-30 °C, (ii) composition of membrane lipids, and (iii) microbial community structure. We observed that membrane composition and cultivation temperature were closely related to the activity of anammox biomasses.
View Article and Find Full Text PDFMany reports have documented that the presence of SARS-CoV-2 RNA in the influents of municipal wastewater treatment plants (WWTP) correlates with the actual epidemic situation in a given city. However, few data have been reported thus far on measurements upstream of WWTPs, i.e.
View Article and Find Full Text PDFAnammox bacteria enable efficient removal of nitrogen from sewage in processes involving partial nitritation and anammox (PN/A) or nitrification, partial denitrification, and anammox (N-PdN/A). In mild climates, anammox bacteria must be adapted to ≤15 °C, typically by gradual temperature decrease; however, this takes months or years. To reduce the time necessary for the adaptation, an unconventional method of 'cold shocks' is promising, involving hours-long exposure of anammox biomass to extremely low temperatures.
View Article and Find Full Text PDFAntibiotic resistance is considered one of the biggest threats to public health and has become a major concern for governments and international organizations. Combating this problem starts with improving global surveillance of antibiotic resistance genes (ARGs) and applying standardized protocols, both in a clinical and environmental context, in agreement with the One Health approach. Exceptional efforts should be directed to controlling ARGs conferring resistance to Critically Important Antimicrobials (CIA).
View Article and Find Full Text PDFPartial nitritation-anammox (PN/A) process will substantially reduce the costs for the removal of nitrogen in the mainstream of municipal sewage. However, one of the mainstream PN/A challenges is to reduce the time necessary for the adaptation of anammox bacteria to lower temperatures in mild climates. In this study, we exposed anammox flocculent culture to cold shocks [35°C → 5°C (8 h) → 15°C] and evaluated long-term cold shock response.
View Article and Find Full Text PDFHydrogen sulfide is a toxic and usually undesirable by-product of the anaerobic treatment of sulfate-containing wastewater. It can be removed through microaeration, a simple and cost-effective method involving the application of oxygen-limiting conditions (i.e.
View Article and Find Full Text PDFWater Sci Technol
December 2017
When applying partial nitritation (PN) to anaerobically pre-treated sewage, ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) will be exposed to dissolved sulfide and methane. Both sulfide and methane may inhibit nitrification. To gain knowledge necessary for sustaining PN under these conditions, we exposed an AOB enrichment and a mixed nitrifying culture to dissolved sulfide and methane.
View Article and Find Full Text PDFBiotechnol Prog
January 2018
The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10-15°C) is crucial for sustaining energy-efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.
View Article and Find Full Text PDFPartial nitritation/anammox can provide energy-efficient nitrogen removal from the main stream of municipal wastewater. The main bottleneck is the growth of nitrite oxidizing bacteria (NOB) at low temperatures (<15 °C). To produce effluent suitable for anammox, real municipal wastewater after anaerobic pretreatment was treated by enriched ammonium oxidizing bacteria (AOB) in suspended sludge SBR at 12 °C.
View Article and Find Full Text PDFPurpose: To investigate the roles of BCL2, MCL1, and BCL-XL in the survival of diffuse large B-cell lymphoma (DLBCL).
Experimental Designs: Immunohistochemical analysis of 105 primary DLBCL samples, and Western blot analysis of 18 DLBCL cell lines for the expression of BCL2, MCL1, and BCL-XL. Pharmacologic targeting of BCL2, MCL1, and BCL-XL with ABT-199, homoharringtonine (HHT), and ABT-737.
Background: Mantle cell lymphoma (MCL) is an aggressive type of B-cell non-Hodgkin lymphoma associated with poor prognosis. Implementation of high-dose cytarabine (araC) into induction therapy became standard-of-care for all newly diagnosed younger MCL patients. However, many patients relapse even after araC-based regimen.
View Article and Find Full Text PDFA novel nitrite-oxidizing bacterium (NOB), strain Lb(T), was isolated from a nitrifying bioreactor with a high loading of ammonium bicarbonate in a mineral medium with nitrite as the energy source. The cells were oval (lancet-shaped) rods with pointed edges, non-motile, Gram-positive (by staining and from the cell wall structure) and non-spore-forming. Strain Lb(T) was an obligately aerobic, chemolitoautotrophic NOB, utilizing nitrite or formate as the energy source and CO2 as the carbon source.
View Article and Find Full Text PDFNitrite-oxidizing bacteria (NOB) catalyze the second step of nitrification, a major process of the biogeochemical nitrogen cycle, but the recognized diversity of this guild is surprisingly low and only two bacterial phyla contain known NOB. Here, we report on the discovery of a chemolithoautotrophic nitrite oxidizer that belongs to the widespread phylum Chloroflexi not previously known to contain any nitrifying organism. This organism, named Nitrolancetus hollandicus, was isolated from a nitrifying reactor.
View Article and Find Full Text PDFThe ammonia-oxidizing bacterial community (AOB) was investigated in two types of laboratory-scale bioreactors performing partial oxidation of ammonia to nitrite or nitrate at high (80 mM) to extremely high (428 mM) concentrations of ammonium bicarbonate. At all conditions, the dominant AOB was affiliated to the Nitrosomonas europaea lineage as was determined by fluorescence in situ hybridization and polymerase chain reaction in combination with denaturing gradient gel electrophoresis. Molecular analysis of the mixed populations, based on the 16S rRNA and cbbL genes, demonstrated the presence of two different phylotypes of Nitrosomonas, while microbiological analysis produced a single phylotype, represented by three different morphotypes.
View Article and Find Full Text PDF