Publications by authors named "Veit Stuphorn"

Decision-making is a cognitive process involving working memory, executive function, and attention. However, the connectivity of large-scale brain networks during decision-making is not well understood. This is because gaining access to large-scale brain networks in humans is still a novel process.

View Article and Find Full Text PDF

Phase-amplitude modulation (the modulation of the amplitude of higher frequency oscillations by the phase of lower frequency oscillations) is a specific type of cross-frequency coupling that has been observed in neural recordings from multiple species in a range of behavioral contexts. Given its potential importance, care must be taken with how it is measured and quantified. Previous studies have quantified phase-amplitude modulation by measuring the distance of the amplitude distribution from a uniform distribution.

View Article and Find Full Text PDF

Specific brain pathways can lower or raise the willingness of monkeys to take risks.

View Article and Find Full Text PDF

Executive function (EF) consists of higher level cognitive processes including working memory, cognitive flexibility, and inhibition which together enable goal-directed behaviors. Many neurological disorders are associated with EF dysfunctions which can lead to suboptimal behavior. To assess the roles of these processes, we introduce a novel behavioral task and modeling approach.

View Article and Find Full Text PDF

In humans, risk attitude is highly context-dependent, varying with wealth levels or for different potential outcomes, such as gains or losses. These behavioral effects have been modelled using prospect theory, with the key assumption that humans represent the value of each available option asymmetrically as a gain or loss relative to a reference point. It remains unknown how these computations are implemented at the neuronal level.

View Article and Find Full Text PDF

Multi-view learning improves the learning performance by utilizing multi-view data: data collected from multiple sources, or feature sets extracted from the same data source. This approach is suitable for primate brain state decoding using cortical neural signals. This is because the complementary components of simultaneously recorded neural signals, local field potentials (LFPs) and action potentials (spikes), can be treated as two views.

View Article and Find Full Text PDF

Classically, specific orbitofrontal cortex (OFC) neurons are thought to represent attributes of specific decision options. A new model proposes instead that OFC neurons represent whichever option is currently attended. A recent study, however, tests these two models and rules out the 'current-focus-of-attention' model.

View Article and Find Full Text PDF

A key question in decision-making is how people integrate amounts and probabilities to form preferences between risky alternatives. Here we rely on the general principle of integration-to-boundary to develop several biologically plausible process models of risky-choice, which account for both choices and response-times. These models allowed us to contrast two influential competing theories: i) within-alternative evaluations, based on multiplicative interaction between amounts and probabilities, ii) within-attribute comparisons across alternatives.

View Article and Find Full Text PDF

Humans and other animals need to make decisions under varying degrees of uncertainty. These decisions are strongly influenced by an individual's risk preference; however, the neuronal circuitry by which risk preference shapes choice is still unclear [1]. Supplementary eye field (SEF), an oculomotor area within primate medial frontal cortex, is thought to be an essential part of the neuronal circuit underlying oculomotor decision making, including decisions under risk [2-5].

View Article and Find Full Text PDF

Real-world value often depends on subtle, continuously variable visual cues specific to particular object categories, like the tailoring of a suit, the condition of an automobile, or the construction of a house. Here, we used microelectrode recording in behaving monkeys to test two possible mechanisms for category-specific value-cue processing: (1) previous findings suggest that prefrontal cortex (PFC) identifies object categories, and based on category identity, PFC could use top-down attentional modulation to enhance visual processing of category-specific value cues, providing signals to PFC for calculating value, and (2) a faster mechanism would be first-pass visual processing of category-specific value cues, immediately providing the necessary visual information to PFC. This, however, would require learned mechanisms for processing the appropriate cues in a given object category.

View Article and Find Full Text PDF

Executive control involves the ability to flexibly inhibit or change an action when it is contextually inappropriate. Using the complimentary techniques of human fMRI and monkey electrophysiology in a context-dependent stop signal task, we found a functional double dissociation between the right ventrolateral prefrontal cortex (rVLPFC) and the bi-lateral frontal eye field (FEF). Different regions of rVLPFC were associated with context-based signal meaning versus intention to inhibit a response, while FEF activity corresponded to success or failure of the response inhibition regardless of the stimulus response mapping or the context.

View Article and Find Full Text PDF

Voluntary behaviour requires control mechanisms that ensure our ability to act independently of habitual and innate response tendencies. Electrophysiological experiments, using the stop-signal task in humans, monkeys and rats, have uncovered a core network of brain structures that is essential for response inhibition. This network is shared across mammals and seems to be conserved throughout their evolution.

View Article and Find Full Text PDF

Experiments in which monkeys have to select or estimate the location of a target are revealing more about the role of the dorsal premotor cortex in decision making.

View Article and Find Full Text PDF

Value-based decisions could rely either on the selection of desired economic goods or on the selection of the actions that will obtain the goods. We investigated this question by recording from the supplementary eye field (SEF) of monkeys during a gambling task that allowed us to distinguish chosen good from chosen action signals. Analysis of the individual neuron activity, as well as of the population state-space dynamic, showed that SEF encodes first the chosen gamble option (the desired economic good) and only ~100 ms later the saccade that will obtain it (the chosen action).

View Article and Find Full Text PDF

Real-life decisions often involve multiple intermediate choices among competing, interdependent options. Lorteije et al. (2015) introduce a new paradigm for dissecting the neural strategies underlying such decisions.

View Article and Find Full Text PDF

Choices are made with varying degrees of confidence, a cognitive signal representing the subjective belief in the optimality of the choice. Confidence has been mostly studied in the context of perceptual judgments, in which choice accuracy can be measured using objective criteria. Here, we study confidence in subjective value-based decisions.

View Article and Find Full Text PDF

The medial frontal cortex has been suggested to play a role in the control, monitoring, and selection of behavior. The supplementary eye field (SEF) is a cortical area within medial frontal cortex that is involved in the regulation of eye movements. Neurophysiological studies in the SEF of macaque monkeys have systematically investigated the role of SEF in various behavioral control and monitoring functions.

View Article and Find Full Text PDF

Objects in the environment differ in their low-level perceptual properties (e.g., how easily a fruit can be recognized) as well as in their subjective value (how tasty it is).

View Article and Find Full Text PDF

A key component of executive control and decision making is the ability to use the consequences of chosen actions to update and inform the process of future action selection. Evaluative signals, which monitor the outcomes of actions, are critical for this ability. Signals related to the evaluation of actions have been identified in eye movement-related areas of the medial frontal cortex.

View Article and Find Full Text PDF

Adaptive behavior requires the ability to flexibly control actions. This can occur either proactively to anticipate task requirements, or reactively in response to sudden changes. Recent work in humans has identified a network of cortical and subcortical brain region that might have an important role in proactive and reactive control.

View Article and Find Full Text PDF

The outcomes of many decisions are uncertain and therefore need to be evaluated. We studied this evaluation process by recording neuronal activity in the supplementary eye field (SEF) during an oculomotor gambling task. While the monkeys awaited the outcome, SEF neurons represented attributes of the chosen option, namely, its expected value and the uncertainty of this value signal.

View Article and Find Full Text PDF

The role of top-down control in visual search has been a subject of much debate. Recent research has focused on whether attentional and oculomotor capture by irrelevant salient distractors can be modulated through top-down control, and if so, whether top-down control can be rapidly initiated based on current task goals. In the present study, participants searched for a unique shape in an array containing otherwise homogeneous shapes.

View Article and Find Full Text PDF

Adaptive behavior requires the ability to flexibly control actions. This can occur either proactively to anticipate task requirements, or reactively in response to sudden changes. Here we report neuronal activity in the supplementary motor area (SMA) that is correlated with both forms of behavioral control.

View Article and Find Full Text PDF