Background: In MR-based radiotherapy (RT), MRI images are co-registered to the planning CT to leverage MR image information for RT planning. Especially in brain stereotactic RT, where typical CTV-PTV margins are 1-2 mm, high registration accuracy is critical. Several factors influence the registration accuracy, including the acquisition setup during MR simulation and the registration methods.
View Article and Find Full Text PDFBackground And Purpose: Magnetic resonance imaging (MRI) is a crucial factor in optimal treatment planning for stereotactic radiosurgery. To further the awareness of possible errors in MRI, this work aimed to investigate the magnitude of susceptibility induced MRI distortions for intracranial organs at risk (OARs) and test the effectiveness of actively shimming these distortions.
Materials And Methods: Distortion maps for 45 exams of 42 patients (18 on a 1.
Purpose: To share our experiences in implementing a dedicated magnetic resonance (MR) scanner for radiotherapy (RT) treatment planning using a novel coil setup for brain imaging in treatment position as well as to present developed core protocols with sequences specifically tuned for brain and prostate RT treatment planning.
Materials And Methods: Our novel setup consists of two large 18-channel flexible coils and a specifically designed wooden mask holder mounted on a flat tabletop overlay, which allows patients to be measured in treatment position with mask immobilization. The signal-to-noise ratio (SNR) of this setup was compared to the vendor-provided flexible coil RT setup and the standard setup for diagnostic radiology.
While the role of stereotactic radiotherapy for brain metastases is increasing, evidence on the comparative efficacy and safety of fractionated stereotactic radiotherapy (FSRT) and single-session radiosurgery (SRS) is scarce. Longitudinal volumetric analysis was performed in a consecutive cohort of 120 patients and 190 brain metastases (>0.065 cm in volume / > ~5 mm in diameter) treated exclusively with FSRT ( = 98) and SRS ( = 92), respectively.
View Article and Find Full Text PDFDue to its superior soft tissue contrast, magnetic resonance imaging (MRI) is essential for many radiotherapy treatment indications. This is especially true for treatment planning in intracranial tumors, where MRI has a long-standing history for target delineation in clinical practice. Despite its routine use, care has to be taken when selecting and acquiring MRI studies for the purpose of radiotherapy treatment planning.
View Article and Find Full Text PDFObjectives: To investigate local control and functional outcome following state-of-the-art fractionated stereotactic radiotherapy (FSRT) for paragangliomas of the head and neck.
Methods: In total, 40 consecutive patients with paragangliomas of the head and neck received conventionally FSRT from 2003 to 2016 at the Department of Radiation Oncology of the University Hospital Erlangen. Local control, toxicities, and functional outcome were examined during follow-up.