Designing detection systems based on transimpedance amplifiers is a complex task because noise, frequency response, and stability are coupled constraints. This work presents a straightforward design method of detection systems based on transimpedance amplifiers. We take into account the objectives, scope of the design, and requirements and specifications, including the input signal levels.
View Article and Find Full Text PDFA method for calibration of ultrasonic sensors for optoacoustics that provides both frequency response and sensitivity is presented. In order to obtain the bandwidth and the frequency response of an uncalibrated sensor, a point source with broadband spectra generated by a laser-induced bubble on a copper wire submerged in water is employed. On the other hand, the sensitivity measurement relies on the spatial symmetry of the pressure pulse and on a calibrated transducer.
View Article and Find Full Text PDFA study on the influence of multiple reflections on the transmission coefficients of uniaxial plane-parallel plates is presented. Two representative models are analyzed: one that considers only the first transmission, and a rigorous one, taking into account the multiple reflections within the plate. Modules, phases, and the interference between $p$ and $s$ transmitted fields are evaluated in a wide range of angles of incidence by means of three emblematic examples that illustrate the effects of thickness, birefringence, and optical axis orientation.
View Article and Find Full Text PDFIn this work we present what we believe is the first application of software-defined optoelectronics (SDO) for bidimensional optoacoustic tomography (OAT). The SDO concept refers to optoelectronic systems where the functionality associated with the conditioning and processing of optical and electrical signals are digitally implemented and controlled by software. This paradigm takes advantage of the flexibility of software-defined hardware platforms to develop adaptive instrumentation systems.
View Article and Find Full Text PDFWe present a method to generate sub-microsecond quasi-unipolar pressure pulses. Our approach is based on the laser irradiation of a thin copper wire submerged in water. The acoustic waveforms were recorded using two different, well characterized, wideband detection techniques: piezoelectric and optical interferometry.
View Article and Find Full Text PDFThis paper describes the design and performance of a phase demodulation scheme based on software-defined radio (SDR), applied in heterodyne interferometry. The phase retrieval is performed in real time by means of a low-cost SDR with a wideband optoelectronic front-end. Compared to other demodulation schemes, the system is quite simpler, versatile, and of lower cost.
View Article and Find Full Text PDFIn digital speckle pattern interferometry, fringeless speckle pattern interferograms are obtained when the object field deformation is insufficient to produce local phase variations higher than 2π. Therefore, the use of the well-known phase recovery algorithms based on fringe processing is not adequate. In this work, distinct algorithms based on the application of a straightforward arccosine function to a filtered interferogram and the correlation of intensity images and implicit smoothing splines are proposed, analyzed, and compared for the fast inspection of nanometric displacement fields, avoiding the acquisition of several images.
View Article and Find Full Text PDFThis paper describes the design and performance of a low-noise and high-speed optical sensor that provides two output signals in quadrature from the simultaneous detection of four phase-shifted interferograms. The sensor employs four high-speed photodiodes and high-speed, low-noise transimpedance amplifiers. The optical and electronic design was optimized for high-speed displacement measurement interferometry, over a broad range of operating frequencies.
View Article and Find Full Text PDFConoscopic interferometry for crystal characterization is a very well-known technique with increasing applications in different fields of technology. The advantage of the scheme proposed here is the introduction of a polarization modulator that allows the recovery of the phase information contained in conoscopic interferograms. This represents a real advantage since the most relevant physical information of the sample under study is usually contained in the phase of the fringe pattern.
View Article and Find Full Text PDFThree real-time methods for object-phase recovery are implemented and compared in temporal speckle-pattern interferometry. Empirical mode and intrinsic time-scale decompositions are used and compared as real-time nonstationary and nonlinear filtering techniques for the extraction of the spatio-temporal evolution of the object phase. The proposed real-time methods avoid the application of the Hilbert transform and improve the accuracy of the measurement by filtering under-modulated pixels using Delaunay triangulation.
View Article and Find Full Text PDFThe scope of this work is to present a phase demodulator that enables the recovery of temporal phase information contained in the phase difference between two signals with different polarizations. This demodulator is a polarization interferometer that may consist only of a uniaxial crystal slab and a polarizer sheet. The phase shift between two orthogonal components of the electric field is translated into space by means of birefringent crystals, which act as demodulators or phase analyzers with great robustness.
View Article and Find Full Text PDFThis paper presents a method for amplitude and phase retrieval in simultaneous π/2 phase-shifting heterodyne interferometry. The used optical setup admits the introduction of a temporal carrier and simultaneously verifies the two-beam interferometry equation for each intensity signal, which are π/2 rad out of phase (quadrature). The spatiotemporal recovering process is obtained by isolating the object amplitude and phase using wavelet transform analysis of the temporal series composed by the difference between the measured pixel intensities corresponding to each quadrature signal.
View Article and Find Full Text PDFRev Sci Instrum
March 2014
In this work, we present an achromatic quarter-wave retarder whose design is based upon the reflection properties of an isotropic-anisotropic interface. In theory, it is possible to obtain a π/2 phase shift by means of a total internal reflection at an isotropic-isotropic interface. However, in order to achieve such a phase shift, it is necessary to use a medium with a particularly high refractive index.
View Article and Find Full Text PDFThe fringe pattern obtained when a divergent (or convergent) beam goes through a sample of birefringent crystal between two crossed polarizers contains information that is inherent to the crystalline sample under study. The formation of fringe patterns is analyzed from distinct approaches and with different degrees of approximation considering cones of light of large numerical aperture. We obtain analytic explicit formulas of the phase shift on the screen and compare them with the exact numerical solution.
View Article and Find Full Text PDFRev Esp Sanid Penit
November 2011
Objective: This sub-analysis was designed within the framework of the EPIBAND study to establish the reasons why prison patients do not initiate HCV treatment.
Methods: Epidemiological, prospective, multicentre study conducted in 26 centres. We present the results from those patients included in the EPIBAND study who did not initiate HCV treatment for different reasons.
The calculation of phase shift and optical path difference in birefringent media is related to a wide range of applications and devices. We obtain an explicit formula for the phase shift introduced by an anisotropic uniaxial plane-parallel plate with arbitrary orientation of the optical axis when the incident wave has an arbitrary direction. This allows us to calculate the phase shift introduced by waveplates when considering oblique incidence as well as optical axis misalignments.
View Article and Find Full Text PDF