Multipotent Adult Progenitor Cells (MAPCs) are one potential stem cell source to generate functional hepatocytes or β-cells. However, human MAPCs have less plasticity than pluripotent stem cells (PSCs), as their ability to generate endodermal cells is not robust. Here we studied the role of 14 transcription factors (TFs) in reprogramming MAPCs to induced endodermal progenitor cells (iENDO cells), defined as cells that can be long-term expanded and differentiated to both hepatocyte- and endocrine pancreatic-like cells.
View Article and Find Full Text PDFAlthough pluripotent stem cells can be differentiated into the hepatocyte lineages, such cells retain an immature phenotype. As the chromatin state of regulatory regions controls spatiotemporal gene expression during development, we evaluated changes in epigenetic histone marks in lineage-specific genes throughout in vitro hepatocyte differentiation from human embryonic stem cells (hESCs). Active acetylation and methylation marks at promoters and enhancers correlated with progressive changes in gene expression.
View Article and Find Full Text PDFTools for rapid and efficient transgenesis in "safe harbor" loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs). We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE) in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE, we successfully incorporated several transgenes useful for lineage identification, cell toxicity studies, and gene overexpression to study the hepatocyte lineage.
View Article and Find Full Text PDFExpression of NKX2-1 is required to specify definitive endoderm to respiratory endoderm. However, the transcriptional regulation of NKX2-1 is not fully understood. Here we demonstrate that aside from specifying undifferentiated human embryonic stem cell (hESC) to definitive endoderm, high concentrations of Activin-A are also necessary and sufficient to induce hESC-derived definitive endodermal progeny to a FOXA2/NKX2-1/GATA6/PAX9 positive respiratory epithelial fate.
View Article and Find Full Text PDF