Publications by authors named "Veerle Sterken"

The DESTINY(Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science) Dust Analyser (DDA) is a state-of-the-art dust telescope for the analysis of cosmic dust particles. As the primary scientific payload of the DESTINY mission, it serves the purpose of characterizing the dust environment within the Earth-Moon system, investigating interplanetary and interstellar dust populations at 1 AU from the Sun and studying the dust cloud enveloping the asteroid (3200) Phaethon. DDA features a two-axis pointing platform for increasing the accessible fraction of the sky.

View Article and Find Full Text PDF

ESA's Gravity field and steady-state Ocean Circulation Explorer (GOCE) orbited the Earth between 2009 and 2013 for the determination of the static part of Earth's gravity field. The GPS-derived precise science orbits (PSOs) were operationally generated by the Astronomical Institute of the University of Bern (AIUB). Due to a significantly improved understanding of remaining artifacts after the end of the GOCE mission (especially in the GOCE gradiometry data), ESA initiated a reprocessing of the entire GOCE Level 1b data in 2018.

View Article and Find Full Text PDF

Interstellar dust particles were discovered in situ, in the solar system, with the mission's dust detector in 1992. Ever since, more interstellar dust particles have been measured inside the solar system by various missions, providing insight into not only the composition of such far-away visitors, but also in their dynamics and interaction with the heliosphere. The dynamics of interstellar (and interplanetary) dust in the solar/stellar systems depend on the dust properties and also on the space environment, in particular on the heliospheric/astrospheric plasma, and the embedded time-variable magnetic fields, via Lorentz forces.

View Article and Find Full Text PDF

Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory.

View Article and Find Full Text PDF