Mediolateral weight-shifting is an important aspect of postural control. As it is currently unknown whether a short training session of mediolateral weight-shifting in a virtual reality (VR) environment can improve weight-shifting, we investigated this question and also probed the impact of practice on brain activity. Forty healthy older adults were randomly allocated to a training (EXP, n = 20, age = 70.
View Article and Find Full Text PDFPurpose: Postural control deteriorates with age, especially under dual-task conditions. It is currently unknown how a challenging virtual reality weight-shifting task affects lower back muscle activity. Hence, this study investigated erector spinae neuromuscular control during mediolateral weight-shifting as part of an exergame during single- (ST) and dual-task (DT) conditions in young and older adults.
View Article and Find Full Text PDFSignificance: Functional near-infrared spectroscopy (fNIRS) is increasingly employed in studies requiring repeated measurements, yet test-retest reliability is largely unknown.
Aim: To investigate test-retest reliability during a postural and a finger-tapping task with and without cap-removal.
Approach: Twenty healthy older adults performed a postural and a finger-tapping task.
Gait impairments are common in healthy older adults (HOA) and people with Parkinson's disease (PwPD), especially when adaptations to the environment are required. Traditional rehabilitation programs do not typically address these adaptive gait demands in contrast to repeated gait perturbation training (RGPT). RGPT is a novel reactive form of gait training with potential for both short and long-term consolidation in HOA and PwPD.
View Article and Find Full Text PDFPostural control and cognition are affected by aging. We investigated whether cognitive distraction influenced neural activity differently in young and older adults during a game-like mediolateral weight-shifting task with a personalized task load. Seventeen healthy young and 17 older adults performed a balance game, involving hitting virtual wasps, serial subtractions and a combination of both (dual-task).
View Article and Find Full Text PDFPostural instability is a strong risk factor for falls that becomes more prominent with aging. To facilitate treatment and prevention of falls in an aging society, a thorough understanding of the neural networks underlying postural control is warranted. Here, we present a systematic review of the functional neuroimaging literature of studies measuring posture-related neural activity in healthy subjects.
View Article and Find Full Text PDFThere is controversy whether age-related neuroanatomical and neurophysiological changes in the central nervous system affect healthy old adults' abilities to acquire and retain motor skills. We examined the effects of age on motor skill acquisition and retention and potential underlying mechanisms by measuring corticospinal and intracortical excitability, using transcranial magnetic stimulation. Healthy young (n = 24, 22 years) and old (n = 22, 71 years) adults practiced a wrist flexion-extention visuomotor task or only watched the templates as an attentional control for 20 minutes.
View Article and Find Full Text PDF