Publications by authors named "Veerbhan Kesarwani"

Unlike animals, variability in transcription factors (TFs) and their binding regions (TFBRs) across the plants species is a major problem that most of the existing TFBR finding software fail to tackle, rendering them hardly of any use. This limitation has resulted into underdevelopment of plant regulatory research and rampant use of Arabidopsis-like model species, generating misleading results. Here, we report a revolutionary transformers-based deep-learning approach, PTFSpot, which learns from TF structures and their binding regions' co-variability to bring a universal TF-DNA interaction model to detect TFBR with complete freedom from TF and species-specific models' limitations.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used whole-genome sequencing to analyze 25 fat-related QTLs across various indigenous breeds and found 20 genes with nonsynonymous substitutions.
  • * A distinct SNP pattern was identified in high-milk-yielding breeds, confirming significant genetic differences in fat QTLs compared to low-milk-yielding breeds through pyrosequencing.
View Article and Find Full Text PDF

Malaria is a major global health issue due to the emergence of resistance to most of the available antimalarial drugs. There is an urgent need to discover new antimalarials to tackle the resistance issue. The present study aims to explore the antimalarial potential of chemical constituents reported from Cissampelos pareira L.

View Article and Find Full Text PDF

Biofilms are assemblages of sessile microorganisms that form an extracellular matrix around themselves and mediate attachment to surfaces. The major component of the extracellular matrix of Uropathogenic E. coli and other Enterobacteriaceae are curli fibers, making biofilms robust and resistant to antimicrobials.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral pathogen causing life-threatening diseases in humans. Interaction between the spike protein of SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) is a potential factor in the infectivity of a host. In this study, the interaction of SARS-CoV-2 spike protein with its receptor, ACE2, in different hosts was evaluated to predict the probability of viral entry.

View Article and Find Full Text PDF

The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest.

View Article and Find Full Text PDF

Compared with other nanomaterials, surface-modified iron oxide nanoparticles (IONPs) have gained attraction for cancer therapy applications due to its low toxicity, and long retention time. An innocuous targeting strategy was developed by generation of fluorescein isothiocyanate (FITC)-labeled peptide (growth factor domain (GFD) and somatomedin B domain (SMB)) functionalized, chitosan-coated IONPs (IONPs/C). It can be used to target urokinase plasminogen activator receptor (uPAR), which is a surface biomarker, in ovarian cancer.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), which started out as an outbreak of pneumonia, has now turned into a pandemic due to its rapid transmission. Besides developing a vaccine, rapid, accurate, and cost-effective diagnosis is essential for monitoring and combating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its related variants on time with precision and accuracy. Currently, the gold standard for detection of SARS-CoV-2 is Reverse Transcription Polymerase Chain Reaction (RT-PCR), but it lacks accuracy, is time-consuming and cumbersome, and fails to detect multi-variant forms of the virus.

View Article and Find Full Text PDF

Fluorine Doped Tin Oxide (FTO) electrode was fabricated with reduced Graphene Oxide (rGO) for sensitive detection of Japanese encephalitis virus (JEV) non-structural 1 (NS1) protein. Beforehand, in-silico 3D structure, stability, and docking of recombinant JEV NS1 antigen (NS1-Ag) and antibody (Ab) was evaluated. The recombinant NS1 Ag of 42 kDa was produced in-house by successful cloning into pET-28a(+) plasmid and further expressed using BL21 Escherichia coli (E.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the evolving strains of SARS-CoV-2 and the challenges they pose for COVID-19 diagnosis and treatment.
  • Researchers analyzed proteomic data from infected human cell lines and COVID-19 patient samples to identify unique peptides, assessing various biological characteristics.
  • They discovered promising antigenic peptides for generating specific antibodies and direct applications in developing NEW diagnostic assays for COVID-19.
View Article and Find Full Text PDF
Article Synopsis
  • * The binding of urokinase plasminogen activator's (uPA) growth factor domain (GFD) to uPAR allows further interaction with vitronectin through allosteric modulation, enhancing targeting techniques.
  • * Researchers developed fluorescently labeled gold nanoparticles (AuNPs) combined with chitosan and specialized peptides for effective targeting of uPAR-positive cells, achieving better results in uptake and imaging compared to less optimized combinations.
View Article and Find Full Text PDF

Genomics-led researches are engaged in tracing virus expression pattern, and induced immune responses in human to develop effective vaccine against COVID-19. In this study, targeted expression profiling and differential gene expression analysis of major histocompatibility complexes and innate immune system genes were performed through SARS-CoV-2 infected RNA-seq data of human cell line, and virus transcriptome was generated for T-and B-cell epitope prediction. Docking studies of epitopes with MHC and B-cell receptors were performed to identify potential T-and B-cell epitopes.

View Article and Find Full Text PDF