Publications by authors named "Veerachat Muangsombut"

Bacteriophages (phages), viruses that infect bacteria, are found in abundance not only in the environment but also in the human body. The use of phages for the diagnosis of melioidosis, a tropical infectious disease caused by , is emerging as a promising novel approach, but our understanding of conditions under which prophages can be induced remains limited. Here, we first demonstrated the isolation of phages from the hemocultures of melioidosis patients.

View Article and Find Full Text PDF
Article Synopsis
  • * The study presents the development of a new latex agglutination assay (94TF-LAA) using a specific bacteriophage tail fiber to detect B. pseudomallei quickly, which showed high sensitivity (98%) and decent specificity (83%) in clinical tests.
  • * This rapid test could become a vital tool in areas lacking resources, such as northeastern Thailand, to improve the identification of this dangerous pathogen and ensure appropriate treatment for affected patients.
View Article and Find Full Text PDF
Article Synopsis
  • The Burkholderia pseudomallei cluster includes several species, primarily pathogenic ones like B. pseudomallei and B. mallei, which cause melioidosis and glanders, respectively.
  • Researchers developed a multiplex PCR assay to detect these pathogenic species and their variants, successfully distinguishing them from non-pathogenic strains.
  • Field tests demonstrated that the PCR method is highly sensitive and specific, making it an effective tool for studying the epidemiology of these bacteria in soil environments.
View Article and Find Full Text PDF

, the causative agent of melioidosis, can survive and replicate in macrophages. Little is known about genes that are induced during macrophage infection. We constructed a K96243 promoter trap library with genomic DNA fragments fused to the 5' end of a plasmid-borne gene encoding enhanced green fluorescent protein (eGFP).

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are a recently identified, web-like, extracellular structure composed of decondensed nuclear DNA and associated antimicrobial granules. NETs are extruded into the extracellular environment via the reactive oxygen species (ROS)-dependent cell death pathway participating in inflammation and autoimmune diseases. Transketolase (TKT) is a thiamine pyrophosphate (vitamin B1)-dependent enzyme that links the pentose phosphate pathway with the glycolytic pathway by feeding excess sugar phosphates into the main carbohydrate metabolic pathways to generate biosynthetic reducing capacity in the form of NADPH as a substrate for ROS generation.

View Article and Find Full Text PDF

Burkholderia pseudomallei, a gram-negative intracellular bacillus, is the causative agent of a tropical infectious disease called melioidosis. Bacterial ATP-binding cassette (ABC) transporters import and export a variety of molecules across bacterial cell membranes. At present, their significance in B.

View Article and Find Full Text PDF

Bacterial survival in macrophages can be affected by the natural resistance-associated macrophage protein 1 (Nramp1; also known as solute carrier family 11 member a1 or Slc11a1) which localizes to phagosome membranes and transports divalent cations, including iron. Little is known about the role of Nramp1 in infection, in particular whether this differs for pathogenic species like causing melioidosis or non-pathogenic species like . Here we show that transfected macrophages stably expressing wild-type Nramp1 (Nramp1) control the net replication of , but not .

View Article and Find Full Text PDF

Background: Burkholderia pseudomallei is a soil saprophytic bacterium that causes melioidosis. The infection occurs through cutaneous inoculation, inhalation or ingestion. Bacteriophages (phages) in the same ecosystem may significantly impact the biology of this bacterium in the environment, and in their culturability in the laboratory.

View Article and Find Full Text PDF

Enteropathogenic and enterohaemorrhagic Escherichia coli express a cell cycle-inhibiting factor (Cif), that is injected into host cells via a Type III secretion system (T3SS) leading to arrest of cell division, delayed apoptosis and cytoskeletal rearrangements. A homologue of Cif has been identified in Burkholderia pseudomallei (CHBP; Cif homologue in B. pseudomallei; BPSS1385), which shares catalytic activity, but its prevalence, secretion and function are ill-defined.

View Article and Find Full Text PDF

Burkholderia pseudomallei causes melioidosis, a severe invasive disease endemic in South-East Asia and Northern Australia. Bacterial pathogens of several genera have been reported to be able to sense and respond to the stress-related catecholamine hormone epinephrine. Here, we report that epinephrine induces growth of B.

View Article and Find Full Text PDF

Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative saprophytic bacterium capable of surviving within phagocytic cells. To assess the role of BopC (a type III secreted effector protein) in the pathogenesis of B. pseudomallei, a B.

View Article and Find Full Text PDF

Burkholderia pseudomallei, the causative agent of melioidosis, exploits the Bsa type III secretion system (T3SS) to deliver effector proteins into host cells. These effectors manipulate host cell functions; thus, contributing to the ability of the bacteria to evade the immune response and cause disease. Only two Bsa-secreted effectors have been conclusively identified to date.

View Article and Find Full Text PDF

Burkholderia pseudomallei induces the formation of multinucleated giant cells in cell monolayers. After infection of human macrophage-like U937 cells with B. pseudomallei, addition of monoclonal antibodies against integrin-associated protein (CD47), E-selectin (CD62E), a fusion regulatory protein (CD98), and E-cadherin (CD324) suppressed multinucleated giant cells in a concentration-dependent manner while monoclonal antibodies against other surface molecules did not inhibit fusion despite binding to the cell surface.

View Article and Find Full Text PDF

Burkholderia thailandensis is a close relative of Burkholderia pseudomallei. These organisms are very similar, but B. thailandensis is far less virulent than B.

View Article and Find Full Text PDF

Background: Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl) concentration in airway surface liquid has been proposed.

View Article and Find Full Text PDF

Burkholderia pseudomallei, an infectious Gram-negative bacterium, is the causative pathogen of melioidosis. In the present study, a B. pseudomallei strain with mutation in the bsaQ gene, encoding a structural component of the type III secretion system (T3SS), was constructed.

View Article and Find Full Text PDF