Publications by authors named "Veerabasappa Gowda"

Viperbite is often associated with severe local toxicity, including progressive hemorrhage and myotoxicity, persistent even after the administration of anti-snake venom (ASV). In the recent past, investigations have revealed the orchestrated actions of Zn2+ metalloproteases (Zn2+MPs), phospholipase A2s (PLA2s) and hyaluronidases (HYs) in the onset and progression of local toxicity from the bitten site. As a consequence, venom researchers and medical practitioners are in deliberate quest of potent molecules alongside ASV to tackle the brutal local manifestations induced by aforesaid venom toxins.

View Article and Find Full Text PDF

Three isoenzymes of phospholipase A2 (PLA2), VRV-PL-IIIc, VRV-PL-VII, and VRV-PL-IX were isolated from Daboia russelii snake venom. The venom, upon gel filtration on Sephadex G-75 column, resolved into six peaks (DRG75 I-VI). The VRV-PL-IIIc was purified by subjecting DRG75II to homogeneity by rechromatography in the presence of 8M urea on Sephadex G-75 column.

View Article and Find Full Text PDF

Snake venoms are complex mixture of enzymatic and non-enzymatic proteins. Non-covalent protein-protein interaction leads to protein complexes, which bring about enhanced pharmacological injuries by their synergistic action. Here we report identification and characterization of a new Daboia russelii hemorrhagic complex I (DR-HC-I) containing phospholipase A₂ (PLA₂) and non-enzymatic peptide.

View Article and Find Full Text PDF

Comprehensive knowledge of venom composition is very important for effective management of snake envenomation and antivenom preparation. Daboia russelii venom from the eastern region of India is the most neurotoxic among the four venom samples investigated. From the eastern D.

View Article and Find Full Text PDF

A novel toxic polypeptide, INN-toxin, is purified from the venom of Naja naja using combination of gel-permeation and ion-exchange chromatography. It has a molecular mass of 6951.6Da as determined by MALDI-TOF/MS and the N-terminal sequence of LKXNKLVPLF.

View Article and Find Full Text PDF

In snake venoms, non-covalent protein-protein interaction leads to protein complexes with synergistic and, at times, distinct pharmacological activities. Here we describe a new protein complex containing phospholipaseA(2) (PLA(2)), protease, and a trypsin inhibitor. It is isolated from the venom of Daboia russelii by gel permeation chromatography, on a Sephadex G-75 column.

View Article and Find Full Text PDF

Background: The snake venom group IIA secreted phospholipases A2 (SVPLA2), present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL) at the membrane/water interface and by highly specific direct binding to: (i) presynaptic membrane-bound or intracellular receptors; (ii) natural PLA2-inhibitors from snake serum; and (iii) coagulation factors present in human blood.

Results: Using surface plasmon resonance (SPR) protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa) via a non-catalytic, PL-independent mechanism.

View Article and Find Full Text PDF

PLA2 inhibitors specific to Group I and II PLA2 isoforms are therapeutically important as anti-inflammatory molecules and against venom toxicity. From various natural sources diversified molecules with PLA2 inhibition and concomitant neutralization of inflammatory reactions and venom toxicity were characterized. Using these molecules, lead compounds are generated in several laboratories.

View Article and Find Full Text PDF

The cholinergic hypothesis of Alzheimer's disease (AD) has spurred the development of numerous structural classes of compounds with different pharmacological profile aimed at increasing central cholinergic neurotransmission. Thus proving a symptomatic treatment for this disease are cholinomimetics with the pharmacological profile of acetyl cholinesterase (AchE) inhibitors. The novel bioactive 1-[bis(4-fluorophenyl)-methyl]piperazine derivatives were synthesized under mild conditions using different aryl/alkyl halides and heterocyclic alkyl halides with 1-[bis(4-fluorophenyl)-methyl]piperazine in the presence of powdered potassium carbonate in N,N-dimethylformamide.

View Article and Find Full Text PDF

Venom hyaluronidases help in rapid spreading of the toxins by destroying the integrity of the extra-cellular matrix of the tissues in the victims. A hyaluronidase inhibitor (WSG) is purified from a folk medicinal plant, Withania somnifera. The glycoprotein inhibited the hyaluronidase activity of cobra (Naja naja) and viper (Daboia russelii) venoms, which was demonstrated by zymogram assay and staining of the skin tissues for differential activity.

View Article and Find Full Text PDF

A post-synaptic neurotoxic phospholipase A(2) (PLA(2)) has been purified from Indian cobra Naja naja venom. It was associated with a peptide in the venom. The association was disrupted using 8 M urea.

View Article and Find Full Text PDF

The snake venoms are typically complex mixtures of enzymes and non-enzymatic peptides. Regional variation in the non-enzymatic fraction of Russell's viper venom from three regions of India studied. The eastern, western and southern regional venom upon gel permeation chromatography on sephadex-G-75 column resolved into three peaks.

View Article and Find Full Text PDF

Bilirubin is a powerful antioxidant that suppresses the inflammatory process. However its interaction with proinflammatory PLA(2) enzyme is not known. Inhibition of several secretory phospholipase A(2) (sPLA(2)) enzyme activities by bilirubin was studied using (14)C-oleate labeled Escherichia coli as substrate.

View Article and Find Full Text PDF

A platelet aggregation inhibitor phospholipase A(2) (NND-IV-PLA(2)) was isolated from Naja naja (Eastern India) venom by a combination of cation and anion exchange chromatography. NND-IV-PLA(2) is the most catalytically active enzyme isolated from the Indian cobra venom. The acidic PLA(2) profile of Eastern regional Indian cobra venom is distinctly different from that of the western regional venom.

View Article and Find Full Text PDF

A phospholipase inhibitor (WSG) has been purified from Withania somnifera using gel-filtration and ion-exchange chromatographies. The WSG is an acidic glycoprotein. Its molecular mass as determined by SDS-PAGE was 27kDa.

View Article and Find Full Text PDF

The basic phospholipase A(2) (VRV-PL-VIIIa) from Vipera russelli venom induces multiple toxic effects including neurotoxicity, myotoxicity, edema and hemorrhage. This phospholipase A(2) has been extensively characterized for its pharmacological properties except for hemorrhagic activity. In the present investigation, the lung hemorrhagic activity was assayed using lung dye diffusion method.

View Article and Find Full Text PDF

An acidic phospholipase A2 (EC-I-PLA2) has been purified from the Indian saw-scaled viper (Echis carinatus) venom through a combination of column chromatography and electrophoresis. EC-I-PLA2 has a molecular weight of 16000 by SDS-PAGE. It was focussed between pH 4.

View Article and Find Full Text PDF