Publications by authors named "Veena Vijayan"

Bleomycin (BLM) is a natural product with established anticancer activity, attributed to its ability to cleave intracellular DNA. BLM complexes with iron (BLM-Fe) exhibit peroxidase-like activity, generate reactive oxygen species (ROS), and cause DNA cleavage. Inspired by the mechanism of BLM, we synthesized a novel conjugate of manganese tetraphenylporphyrin (MnTPP) with a biomimetic peptoid (i.

View Article and Find Full Text PDF

Cancer immunotherapy has made tremendous advancements in treating various malignancies. The biggest hurdle to successful immunotherapy would be the immunosuppressive tumor microenvironment (TME) and low immunogenicity of cancer cells. To make immunotherapy successful, the 'cold' TME must be converted to 'hot' immunostimulatory status to activate residual host immune responses.

View Article and Find Full Text PDF

Palm oil mill effluent (POME) is regarded as deleterious to the environment, primarily owing to the substantial volume of waste it produces during palm oil extraction. In terms of contaminant composition, POME surpasses the pollutant content typically found in standard municipal sewage, therefore releasing it without treatment into water bodies would do irreparable damage to the environment. Main palm oil mills are normally located in the proximity of natural rivers in order to take advantage of the cheap and abundant water source.

View Article and Find Full Text PDF

Magnetic hyperthermia has attracted considerable attention for efficient cancer therapy because of its noninvasive nature, deep tissue penetration, and minimal damage to healthy tissues. Herein, we have fused cancer cell membrane fragments with lipids and cloaked them on magnetic nanorings to form targeted Fe nanorings (TF) for tumor-targeted magnetic hyperthermia-induced tumor ablation. In our approach, cell membrane fragments from cancer cells were fused with lipids to form vesicles, which could efficiently encapsulate magnetic nanorings, thereby forming TF.

View Article and Find Full Text PDF

Gouty arthritis is characterized by chronic deposition of monosodium urate (MSU) crystals in the joints and other tissues, resulting in the production of excess reactive oxygen species (ROS) and proinflammatory cytokines that intensify synovial inflammation. This condition is mainly associated with inflammatory M1 macrophage activation and oxidative stress production. Hence, gout symptoms can often be resolved by eliminating M1 macrophage activation and scavenging oxidative stress in the inflamed areas.

View Article and Find Full Text PDF

Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs.

View Article and Find Full Text PDF

Transforming growth factor-β-activated kinase 1 (TAK1), which is highly expressed and aberrantly activated in triple-negative breast cancer (TNBC), plays a pivotal role in metastasis and progression. This makes it a potential therapeutic target for TNBC. Previously, we reported lectin galactoside-binding soluble 3 binding protein (LGALS3BP) as a negative regulator of TAK1 signaling in the inflammatory response and inflammation-associated cancer progression.

View Article and Find Full Text PDF

CrkII, a member of the adaptor protein family, is known to participate in bone homeostasis the regulation of osteoclasts and osteoblasts. Therefore, silencing would beneficially impact the bone microenvironment. In this study, siRNA encapsulated by a bone-targeting peptide (AspSerSer)-liposome was evaluated for its therapeutic applications using a receptor activator of nuclear factor kappa-B ligand (RANKL)-induced bone loss model.

View Article and Find Full Text PDF

Premature drug release and poor controllability is a challenge in the practical application of tumor therapy, which may lead to poor chemotherapy efficacy and severe adverse effects. In this study, a reactive oxygen species (ROS)-cleavable nanoparticle system (MXene-TK-DOX@PDA) was designed for effective chemotherapy drug delivery and antibacterial applications. Doxorubicin (DOX) was conjugated to the surface of (3-aminopropyl)triethoxysilane (APTES)-functionalized MXene via an ROS-cleavable diacetoxyl thioketal (TK) linkage.

View Article and Find Full Text PDF

Immune checkpoint inhibitors become a standard therapy for malignant melanoma. As immune checkpoint inhibitor monotherapies proved to have limited efficacy in significant portion of patients, it is envisaged that combination with other therapeutic modalities may improve clinical outcomes. We investigated the effect of combining photodynamic therapy (PDT) and TLR5 agonist flagellin-adjuvanted tumor-specific peptide vaccination (FlaB-Vax) on the promotion of PD-1 blockade-mediated melanoma suppression using a mouse B16-F10 implantation model.

View Article and Find Full Text PDF

Background: Nanoparticle-mediated photothermal therapy (PTT) has been well studied as a treatment for cancer. However, the therapeutic outcome of PTT is often hindered by the penetration depth of laser light. In the tumor margin beyond the laser penetration limit, tumor recurrence often occurs, bypassing the immune response of the host.

View Article and Find Full Text PDF

The development of vaccines plays a vital role in the effective control of several fatal diseases. However, effective prophylactic and therapeutic vaccines have yet to be developed for completely curing deadly diseases, such as cancer, malaria, HIV, and serious microbial infections. Thus, suitable vaccine candidates need to be designed to elicit appropriate immune responses.

View Article and Find Full Text PDF

Tumor adaption to hypoxic stress not only plays a crucial role in tumor malignancy but also can protect cancer cells from therapeutic interventions. Hence, therapeutic strategies attenuating tumor hypoxia in conjunction with conventional therapies may be an ideal approach. Here, we report the application of in situ oxygenic carbon nano-onion (CNO)/manganese oxide nanopods (iOCOMs) as novel theranostic photothermal transducers to neutralize the oncogenic influence of the hypoxic tumor microenvironment (TME).

View Article and Find Full Text PDF

Biomimetic functionalization of nanoparticles through camouflaging with cellular membranes has emerged as a promising strategy for cancer theragnostics. Cellular membranes used for camouflaging nanoparticles are generally isolated from blood cells, immune cells, cancer cells, and stem cells. The camouflaging strategy of wrapping nanoparticles with cellular membranes allows for superior tumor targeting through self-recognition, homotypic targeting and prolonged systematic circulation, thereby aiding in effective tumor therapy.

View Article and Find Full Text PDF

Tailoring combinatorial therapies along with real-time monitoring strategies has been the major focus of overcoming multidrug resistance in cancer. However, attempting to develop a multifunctional nanoplatform in a single construct leads to compromising therapeutic outcomes. Herein, we developed a simple, theranostic nanoassembly containing a hyaluronic acid-stabilized redox-sensitive (HART) polyethylenimine polyplex composed of a doxorubicin (DOX) intercalated Bcl-2 shRNA encoded plasmid along with a green-synthesized hausmannite (MnO) and hematite (FeO) nanoparticle (GMF).

View Article and Find Full Text PDF

Biomimetic nanoplatform being a recent and emerging strategy plays an important role in a wide variety of applications. The different types of membranes used for coating include membranes from red blood cells, platelets, leucocytes, neutrophils, cancer cells, stem cells, etc. The as obtained membrane vesicles are fused onto the core nanoparticles through extrusion, sonication, electroporation.

View Article and Find Full Text PDF

Desquamative gingivitis (DG) is a clinical condition in which the gingiva appears reddish, glazed, and friable with loss of superficial epithelium. DG is considered a clinical manifestation of many gingival diseases and hence not identified as a diagnosis itself. Mucous membrane pemphigoid (MMP) is an autoimmune vesiculobullous disorder of mucous membrane characterized by subepithelial bullae formation.

View Article and Find Full Text PDF