Publications by authors named "Veena Thomas"

Targeting antigens with antibodies exhibiting pH/Ca-dependent binding against an antigen is an attractive strategy to mitigate target-mediated disposition and antigen buffering. Studies have reported improved serum exposure of antibodies exhibiting pH/Ca-binding against membrane-bound receptors. Asialoglycoprotein receptor 1 (ASGR1) is a membrane-bound receptor primarily localized in hepatocytes.

View Article and Find Full Text PDF

Obesity is a major public health crisis. Multi-specific peptides have emerged as promising therapeutic strategies for clinical weight loss. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are endogenous incretins that regulate weight through their receptors (R).

View Article and Find Full Text PDF

The development of therapeutic fusion protein drugs is often impeded by the unintended consequences that occur from fusing together domains from independent naturally occurring proteins, consequences such as altered biodistribution, tissue uptake, or rapid clearance and potential immunogenicity. For therapeutic fusion proteins containing globular domains, we hypothesized that aberrant in vivo behavior could be related to low kinetic stability of these domains leading to local unfolding and susceptibility to partial proteolysis and/or salvage and uptake. Herein we describe an assay to measure kinetic stability of therapeutic fusion proteins by way of their sensitivity to the protease thermolysin.

View Article and Find Full Text PDF

In this investigation, we tested the hypothesis that a physiologically based pharmacokinetic (PBPK) model incorporating measured metrics of off-target binding can largely explain the inter-antibody variability in monoclonal antibody (mAb) pharmacokinetics (PK). A diverse panel of 83 mAbs was evaluated for PK in wild-type mice and subjected to 10 assays to measure major physiochemical attributes. After excluding for target-mediated elimination and immunogenicity, 56 of the remaining mAbs with an eight-fold variability in the area under the curve (: 1.

View Article and Find Full Text PDF

Biologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational methods to predict biophysical properties from protein sequence, potentially in combination with high throughput assays, could decrease timelines and increase the success rates for therapeutic developability engineering by eliminating lengthy and expensive cycles of recombinant protein production and testing. To support development of high-quality predictive models for antibody developability, we designed a sequence-diverse panel of 83 effector functionless IgG1 antibodies displaying a range of biophysical properties, produced and formulated each protein under standard platform conditions, and collected a comprehensive package of analytical data, including in vitro assays and in vivo mouse pharmacokinetics.

View Article and Find Full Text PDF

Age-related central neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are a rising public health concern and have been plagued by repeated drug development failures. The complex nature and poor mechanistic understanding of the etiology of neurodegenerative diseases has hindered the discovery and development of effective disease-modifying therapeutics. Quantitative systems pharmacology models of neurodegeneration diseases may be useful tools to enhance the understanding of pharmacological intervention strategies and to reduce drug attrition rates.

View Article and Find Full Text PDF

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) regulate glucose and energy homeostasis. Targeting both pathways with GIP receptor (GIPR) antagonist antibody (GIPR-Ab) and GLP-1 receptor (GLP-1R) agonist, by generating GIPR-Ab/GLP-1 bispecific molecules, is an approach for treating obesity and its comorbidities. In mice and monkeys, these molecules reduce body weight (BW) and improve many metabolic parameters.

View Article and Find Full Text PDF

Therapeutic proteins (TPs) are a diverse drug class that include monoclonal antibodies (mAbs), recombinantly expressed enzymes, hormones and growth factors, cytokines (e.g. chemokines, interleukins, interferons), as well as a wide range of engineered fusion scaffolds containing IgG1 Fc domain for half-life extension.

View Article and Find Full Text PDF

The decision to pursue a monoclonal antibody (mAb) as a therapeutic for disease intervention requires the assessment of many factors, such as target-biology, including the total target burden and its accessibility at the intended site of action, as well as mAb-specific properties like binding affinity and the pharmacokinetics in serum and tissue. Interleukin-36 receptor (IL-36 R) is a member of the IL-1 family cytokine receptors and an attractive target to treat numerous epithelial-mediated inflammatory conditions, including psoriatic and rheumatoid arthritis, asthma, and chronic obstructive pulmonary disease. However, information concerning the expression profile of IL-36 R at the protein level is minimal, so the feasibility of developing a therapeutic mAb against this target is uncertain.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are currently the largest and most dominant class of therapeutic proteins. Inter-individual variability has been observed for several mAbs; however, an understanding of the underlying mechanisms and factors contributing to inter-subject differences in mAb disposition is still lacking. In this review, we analyze the mechanisms of antibody disposition and the putative mechanistic determinants of inter-individual variability.

View Article and Find Full Text PDF

Here we have investigated whole-body pharmacokinetics (PK) of exogenously administered T cells in a mouse model of melanoma and have developed a physiologically based pharmacokinetic (PBPK) model to quantitatively characterize the data. T cells were isolated from the spleen of tumor-bearing mice, activated, and labeled with chromium-51 to facilitate the quantification. Labeled T cells were injected in the tumor-bearing mice, and PK was measured in 19 different tissues.

View Article and Find Full Text PDF

In this investigation, we test the hypothesis that treatment with sorafenib, an anti-angiogenic agent, decreases tumor vascularization and, consequently, hinders the delivery of monoclonal antibodies (mAb) to xenograft tumors. Severe combined immunodeficiency mice bearing carcinoembryonic antigen (CEA) expressing tumor xenografts were divided into control and sorafenib-treated groups. Sorafenib was administered to the latter group at 50 mg/kg IP every 48 h, starting 4 days post-tumor implantation.

View Article and Find Full Text PDF

Background: The incidence of type 1 diabetes has been increasing all over the world including Saudi Arabia and environmental factors have been suggested to play an important role in its etiology.

Objective: The aim of this study was to evaluate if there are any contributory roles of various environmental factors in the rising incidence of type 1 diabetes in children in the Eastern Province of Saudi Arabia.

Methods: We conducted a retrospective study of Saudi Arab subjects (n = 119) diagnosed between 1980 and 2009 with type 1 diabetes and these subjects were classified to six groups on the basis of the onset of diabetes.

View Article and Find Full Text PDF

Preorganization of enzyme active sites for substrate recognition typically comes at a cost to the stability of the folded form of the protein; consequently, enzymes can be dramatically stabilized by substitutions that attenuate the size and preorganization "strain" of the active site. How this stability-activity tradeoff constrains enzyme evolution has remained less certain, and it is unclear whether one should expect major stability insults as enzymes mutate towards new activities or how these new activities manifest structurally. These questions are both germane and easy to study in beta-lactamases, which are evolving on the timescale of years to confer resistance to an ever-broader spectrum of beta-lactam antibiotics.

View Article and Find Full Text PDF

With an increasing interest in RNA therapeutics and for targeting RNA to treat disease, there is a need for the tools used in protein-based drug design, particularly DOCKing algorithms, to be extended or adapted for nucleic acids. Here, we have compiled a test set of RNA-ligand complexes to validate the ability of the DOCK suite of programs to successfully recreate experimentally determined binding poses. With the optimized parameters and a minimal scoring function, 70% of the test set with less than seven rotatable ligand bonds and 26% of the test set with less than 13 rotatable bonds can be successfully recreated within 2 A heavy-atom RMSD.

View Article and Find Full Text PDF

TEM-1 beta-lactamase confers bacterial resistance to penicillin antibiotics and has acquired mutations that permit the enzyme to hydrolyze extended-spectrum cephalosporins or to avoid inactivation by beta-lactamase inhibitors. However, many of these substitutions have been shown to reduce activity against penicillin antibiotics and/or result in loss of stability for the enzyme. In order to gain more information concerning the tradeoffs associated with active site substitutions, a genetic selection was used to find second site mutations that partially restore ampicillin resistance levels conferred by an R244A active site TEM-1 beta-lactamase mutant.

View Article and Find Full Text PDF

Objective: Because post-bariatric surgery patients undergo massive weight loss, the resulting skin excess can lead to both functional problems and profound dissatisfaction with appearance. Correcting skin excess could improve all these corollaries, including body image. Presently, few data are available documenting body image and weight-related quality of life in this population.

View Article and Find Full Text PDF

Beta-lactamase confers resistance to penicillin-like antibiotics by hydrolyzing their beta-lactam bond. To combat these enzymes, inhibitors covalently cross-linking the hydrolytic Ser70 to Ser130 were introduced. In turn, mutant beta-lactamases have emerged with decreased susceptibility to these mechanism-based inhibitors.

View Article and Find Full Text PDF

We report a novel observation that the neurotoxic Alzheimer peptide Abeta1-42, when pre-incubated, causes a dramatic and lasting membrane depolarization in differentiated human hNT neuronal cells and in rodent PC12 cells in a concentration-dependent manner. This phenomenon involves activation of the metabotropic glutamate receptor, mGluR(1). Abeta-induced membrane depolarization in PC12 cells is sensitive to mGluR(1) antagonists and to pertussis and cholera toxins, indicating the involvement of particular G-proteins.

View Article and Find Full Text PDF