Objective: Application of cluster analytic procedures has advanced understanding of the cognitive heterogeneity inherent in diverse epilepsy syndromes and the associated clinical and neuroimaging features. Application of this unsupervised machine learning approach to the neuropsychological performance of persons with juvenile myoclonic epilepsy (JME) has yet to be attempted, which is the intent of this investigation.
Methods: A total of 77 JME participants, 19 unaffected siblings, and 44 unrelated controls, 12 to 25 years of age, were administered a comprehensive neuropsychological battery (intelligence, language, memory, executive function, and processing speed), which was subjected to factor analysis followed by K-means clustering of the resultant factor scores.
Introduction: Emerging evidence illustrates that temporal lobe epilepsy (TLE) involves network disruptions represented by hyperexcitability and other seizure-related neural plasticity. However, these associations are not well-characterized. Our study characterizes the whole brain white matter connectome abnormalities in TLE patients compared to healthy controls (HCs) from the prospective Epilepsy Connectome Project study.
View Article and Find Full Text PDFProbiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation.
View Article and Find Full Text PDFWhilst the concept of a general mental factor known as '' has been of longstanding interest, for unknown reasons, it has never been interrogated in epilepsy despite the 100+ year empirical history of the neuropsychology of epilepsy. This investigation seeks to identify within a comprehensive neuropsychological data set and compare participants with temporal lobe epilepsy to controls, characterize the discriminatory power of compared with domain-specific cognitive metrics, explore the association of with clinical epilepsy and sociodemographic variables and identify the structural and network properties associated with in epilepsy. Participants included 110 temporal lobe epilepsy patients and 79 healthy controls between the ages of 19 and 60.
View Article and Find Full Text PDFWe introduce a novel, data-driven topological data analysis (TDA) approach for embedding brain networks into a lower-dimensional space in quantifying the dynamics of temporal lobe epilepsy (TLE) obtained from resting-state functional magnetic resonance imaging (rs-fMRI). This embedding facilitates the orthogonal projection of 0D and 1D topological features, allowing for the visualization and modeling of the dynamics of functional human brain networks in a resting state. We then quantify the topological disparities between networks to determine the coordinates for embedding.
View Article and Find Full Text PDFIntroduction: Crohn's disease (CD), one of the main phenotypes of inflammatory bowel disease (IBD), can affect any part of the gastrointestinal tract. It can impact the function of gastrointestinal secretions, as well as increasing the intestinal permeability leading to an aberrant immunological response and subsequent intestinal inflammation. Studies have reported anatomical and functional brain changes in Crohn's Disease patients (CDs), possibly due to increased inflammatory markers and microglial cells that play key roles in communicating between the brain, gut, and systemic immune system.
View Article and Find Full Text PDFInfections by multidrug resistant bacteria (MDR) are becoming increasingly difficult to treat and alternative approaches like phage therapy, which is unhindered by drug resistance, are urgently needed to tackle MDR bacterial infections. During phage therapy phage cocktails targeting different receptors are likely to be more effective than monophages. In the present study, phages targeting carbapenem resistant clinical isolate of E.
View Article and Find Full Text PDFPersistent homology offers a powerful tool for extracting hidden topological signals from brain networks. It captures the evolution of topological structures across multiple scales, known as filtrations, thereby revealing topological features that persist over these scales. These features are summarized in persistence diagrams, and their dissimilarity is quantified using the Wasserstein distance.
View Article and Find Full Text PDFAnn Clin Transl Neurol
November 2023
Short-range functional connectivity in the limbic network is increased in patients with temporal lobe epilepsy (TLE), and recent studies have shown that cortical myelin content correlates with fMRI connectivity. We thus hypothesized that myelin may increase progressively in the epileptic network. We compared T1w/T2w gray matter myelin maps between TLE patients and age-matched controls and assessed relationships between myelin and aging.
View Article and Find Full Text PDFObjective: Social determinants of health, including the effects of neighborhood disadvantage, impact epilepsy prevalence, treatment, and outcomes. This study characterized the association between aberrant white matter connectivity in temporal lobe epilepsy (TLE) and disadvantage using a US census-based neighborhood disadvantage metric, the Area Deprivation Index (ADI), derived from measures of income, education, employment, and housing quality.
Methods: Participants including 74 TLE patients (47 male, mean age = 39.
Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations.
View Article and Find Full Text PDFTemporal lobe epilepsy (TLE) is the most common epilepsy syndrome that empirically represents a network disorder, which makes graph theory (GT) a practical approach to understand it. Multi-shell diffusion-weighted imaging (DWI) was obtained from 89 TLE and 50 controls. GT measures extracted from harmonized DWI matrices were used as factors in a support vector machine (SVM) analysis to discriminate between groups, and in a k-means algorithm to find intrinsic structural phenotypes within TLE.
View Article and Find Full Text PDFThe relationship between temporal lobe epilepsy and psychopathology has had a long and contentious history with diverse views regarding the presence, nature and severity of emotional-behavioural problems in this patient population. To address these controversies, we take a new person-centred approach through the application of unsupervised machine learning techniques to identify underlying latent groups or behavioural phenotypes. Addressed are the distinct psychopathological profiles, their linked frequency, patterns and severity and the disruptions in morphological and network properties that underlie the identified latent groups.
View Article and Find Full Text PDFOur study assessed diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) in pediatric subjects with epilepsy secondary to Focal Cortical Dysplasia (FCD) to improve our understanding of structural network changes associated with FCD related epilepsy. We utilized a data harmonization (DH) approach to minimize confounding effects induced by MRI protocol differences. We also assessed correlations between DTI metrics and neurocognitive measures of the fluid reasoning index (FRI), verbal comprehension index (VCI), and visuospatial index (VSI).
View Article and Find Full Text PDFPersistent homology offers a powerful tool for extracting hidden topological signals from brain networks. It captures the evolution of topological structures across multiple scales, known as filtrations, thereby revealing topological features that persist over these scales. These features are summarized in persistence diagrams, and their dissimilarity is quantified using the Wasserstein distance.
View Article and Find Full Text PDFWe propose a unique, minimal assumption, approach based on variance analyses (compared with standard approaches) to investigate genetic influence on individual differences on the functional connectivity of the brain using 65 monozygotic and 65 dizygotic healthy young adult twin pairs' low-frequency oscillation resting state functional Magnetic Resonance Imaging (fMRI) data from the Human Connectome Project. Overall, we found high number of genetically-influenced functional (GIF) connections involving posterior to posterior brain regions (occipital/temporal/parietal) implicated in low-level processes such as vision, perception, motion, categorization, dorsal/ventral stream visuospatial, and long-term memory processes, as well as high number across midline brain regions (cingulate) implicated in attentional processes, and emotional responses to pain. We found low number of GIF connections involving anterior to anterior/posterior brain regions (frontofrontal > frontoparietal, frontotemporal, frontooccipital) implicated in high-level processes such as working memory, reasoning, emotional judgment, language, and action planning.
View Article and Find Full Text PDFBackground: Ischaemic brain infarction can occur without acute neurological symptoms (covert strokes) or with symptoms (overt strokes), both associated with poor health outcomes. We conducted a pilot study of the incidence of preoperative and postoperative (intraoperative or postoperative) covert strokes, and explored the relationship of postoperative ischaemic brain injury to blood levels of neurofilament light, a biomarker of neuronal damage.
Methods: We analysed 101 preoperative (within 2 weeks of surgery) and 58 postoperative research MRIs on postoperative days 2-9 from two prospective cohorts collected at the University of Wisconsin (NCT01980511 and NCT03124303).
PET and fMRI studies suggest that auditory narrative comprehension is supported by a bilateral multilobar cortical network. The superior temporal resolution of magnetoencephalography (MEG) makes it an attractive tool to investigate the dynamics of how different neuroanatomic substrates engage during narrative comprehension. Using beta-band power changes as a marker of cortical engagement, we studied MEG responses during an auditory story comprehension task in 31 healthy adults.
View Article and Find Full Text PDFMachine learning analyses were performed on graph theory (GT) metrics extracted from brain functional and morphological data from temporal lobe epilepsy (TLE) patients in order to identify intrinsic network phenotypes and characterize their clinical significance. Participants were 97 TLE and 36 healthy controls from the Epilepsy Connectome Project. Each imaging modality (i.
View Article and Find Full Text PDFBackground And Purpose: Traumatic brain injury (TBI) can lead to movement and balance deficits. In addition to physical therapy, brain-based neurorehabilitation efforts have begun to show promise in improving these deficits. The present study investigated the effectiveness of translingual neural stimulation (TLNS) on patients with mild-to-moderate TBI (mmTBI) and related brain connectivity using a resting-state functional connectivity (RSFC) approach.
View Article and Find Full Text PDFAn increasing number of research teams are investigating the efficacy of brain-computer interface (BCI)-mediated interventions for promoting motor recovery following stroke. A growing body of evidence suggests that of the various BCI designs, most effective are those that deliver functional electrical stimulation (FES) of upper extremity (UE) muscles contingent on movement intent. More specifically, BCI-FES interventions utilize algorithms that isolate motor signals-user-generated intent-to-move neural activity recorded from cerebral cortical motor areas-to drive electrical stimulation of individual muscles or muscle synergies.
View Article and Find Full Text PDFObjectives: Central nervous system effects of lingual strengthening exercise to treat dysphagia remain largely unknown. This pilot study measured changes in microstructural white matter to capture alterations in neural signal processing following lingual strengthening exercise.
Methods: Diffusion-weighted images were acquired from seven participants with dysphagia of varying etiologies, before and after lingual strengthening exercise (20 reps, 3×/day, 3 days/week, 8 weeks), using a 10-min diffusion sequence (9 b0, 56 directions with b1000) on GE750 3T scanner.
Functional resonance magnetic imaging (fMRI) allows for identification of eloquent cortex in pre-treatment planning. Previous studies have shown a correlation among lesion to activation distance (LAD) measures and morbidity and mortality. This study investigates the relationship between LAD, well-established language centers (Wernicke's and Broca's), and language performance measures.
View Article and Find Full Text PDF