Publications by authors named "Veena Kinare"

Objectives The study was conducted to generate real-world data on prescription patterns and patient profiles for sitagliptin-based therapies in real-world outpatient settings across India. Method A cross-sectional, observational, multicenter, real-world prescription event monitoring (PEM) study was conducted at 1058 sites across India over six months, from 1 August 2023 to 16 January 2024. Adult type 2 diabetes patients receiving sitagliptin-based mono or combination therapies were included in the study.

View Article and Find Full Text PDF

Changes in the transcription factor (TF) expression are critical for brain development, and they may also underlie neurodevelopmental disorders. Indeed, T-box brain1 (Tbr1) is a TF crucial for the formation of neocortical layer VI, and mutations and microdeletions in that gene are associated with malformations in the human cerebral cortex, alterations that accompany autism spectrum disorder (ASD). Interestingly, Tbr1 upregulation has also been related to the occurrence of ASD-like symptoms, although limited studies have addressed the effect of increased Tbr1 levels during neocortical development.

View Article and Find Full Text PDF

The protein co-factor Ldb1 regulates cell fate specification by interacting with LIM-homeodomain (LIM-HD) proteins in a tetrameric complex consisting of an LDB:LDB dimer that bridges two LIM-HD molecules, a mechanism first demonstrated in the wing disc. Here, we demonstrate conservation of this interaction in the regulation of mammalian hippocampal development, which is profoundly defective upon loss of either or Electroporation of a chimeric construct that encodes the Lhx2-HD and Ldb1-DD (dimerization domain) in a single transcript cell-autonomously rescues a comprehensive range of hippocampal deficits in the mouse mutant, including the acquisition of field-specific molecular identity and the regulation of the neuron-glia cell fate switch. This demonstrates that the LHX:LDB complex is an evolutionarily conserved molecular regulatory device that controls complex aspects of regional cell identity in the developing brain.

View Article and Find Full Text PDF

LIM domain binding protein 1 (LDB1) is a protein cofactor that participates in several multiprotein complexes with transcription factors that regulate mouse forebrain development. Since null mutants display early embryonic lethality, we used a conditional knockout strategy to examine the role of LDB1 in early forebrain development using multiple Cre lines. Loss of from E8.

View Article and Find Full Text PDF

In the developing central nervous system, transcription factors play a crucial role in the regulation of cell fate. Previously we demonstrated that LHX2 is a critical regulator of the neuron-glia cell fate switch in the developing mouse hippocampus. Here, we test LHX2 target gene Pax6 for a role in this process.

View Article and Find Full Text PDF

During appendicular skeletal development, the bi-potential cartilage anlagen gives rise to transient cartilage, which is eventually replaced by bone, and to articular cartilage that caps the ends of individual skeletal elements. While the molecular mechanism that regulates transient cartilage differentiation is relatively well understood, the mechanism of articular cartilage differentiation has only begun to be unraveled. Furthermore, the molecules that coordinate the articular and transient cartilage differentiation processes are poorly understood.

View Article and Find Full Text PDF

Regulation of the neuron-glia cell-fate switch is a critical step in the development of the CNS. Previously, we demonstrated that Lhx2 is a necessary and sufficient regulator of this process in the mouse hippocampal primordium, such that Lhx2 overexpression promotes neurogenesis and suppresses gliogenesis, whereas loss of Lhx2 has the opposite effect. We tested a series of transcription factors for their ability to mimic Lhx2 overexpression and suppress baseline gliogenesis, and also to compensate for loss of Lhx2 and suppress the resulting enhanced level of gliogenesis in the hippocampus.

View Article and Find Full Text PDF