Publications by authors named "Veena Choudhary"

The analysis of a volatolome is a promising approach to allow the early diagnosis of diseases such as cancers. However, one important challenge is to take the chemical fingerprint of the complex blend of volatiles, for many of them only present at the sub-ppm level. We have investigated a facile route to differentiate the chemo-resistive behaviour of quantum resistive vapour sensors (vQRS) and provide them with a strong methanol selectivity by simply changing the sulfonation degree of poly(ether ether ketone) up to 85%.

View Article and Find Full Text PDF

The study represents synthesis, characterization and biological evaluation of redox responsive polymeric nanoparticles based on random multiblock copolymer for doxorubicin delivery in breast cancer. The random multiblock copolymer was synthesized via ring opening polymerization of lactide with polyethylene glycol to form triblock copolymer followed by isomerization polymerization of the triblock copolymer and 2-hydroxyethyl disulfide with the help of hexamethylene diisocynate in presence of dibutyltin dilaurate as a catalyst. Folic acid was conjugated to hydroxyl group from the multiblock polymer through DCC-NHS coupling.

View Article and Find Full Text PDF

Smart hydrogels are promising materials for actuators and sensors, as they can respond to small changes in their environment with a large property change. Hydrogels can respond to a variety of stimuli, for example temperature, pH, metal ions, . In this article, the synthesis and characterization of polyampholyte hydrogels based on open chain ligands showing pH and metal ion sensitivity are described.

View Article and Find Full Text PDF

Naturally occurring antimicrobial peptides (AMPs) display the ability to eliminate a wide variety of bacteria, without toxicity to the host eukaryotic cells. Synthetic polymers containing moieties mimicking lysine and arginine components found in AMPs have been reported to show effectiveness against specific bacteria, with the mechanism of activity purported to depend on the nature of the amino acid mimic. In an attempt to incorporate the antimicrobial activity of both amino acids into a single water-soluble copolymer, a series of copolymers containing lysine mimicking aminopropyl methacrylamide (APMA) and arginine mimicking guanadinopropyl methacrylamide (GPMA) were prepared via aqueous RAFT polymerization.

View Article and Find Full Text PDF

To minimize cardiotoxicity and to increase the bioavailability of doxorubicin, polymersomes based on redox sensitive amphiphilic triblock copolymer poly(polyethylene glycol methacrylate)-poly(caprolactone)-s-s-poly(caprolactone)-poly(polyethylene glycol methacrylate) (pPEGMA-PCL-ss-PCL-pPEGMA) with disulfide linkage were designed and developed. The polymers were synthesized by ring opening polymerization (ROP) of ε-caprolactone followed by atom transfer radical polymerization (ATRP) of PEGMA. The triblock copolymers demonstrated various types of nanoparticle morphologies by varying hydrophobic/hydrophilic content of polymer blocks, with PEGMA content of ∼18% in the triblock copolymer leading to the formation of polymersomes in the size range ∼150 nm.

View Article and Find Full Text PDF

There is an increased interest in the development of high performance microwave shielding materials against electromagnetic pollution in recent years. Barium ferrite decorated reduced graphene oxide (BaFe12O19@RGO) nanocomposite was synthesized by a high energy ball milling technique and its electromagnetic properties were investigated in the frequency range of 12.4-18 GHz (Ku band).

View Article and Find Full Text PDF

A novel electronic nose system comprising functionalized β-cyclodextrin wrapped reduced graphene oxide (RGO) sensors with distinct ability of discrimination of a set of volatile organic compounds has been developed. Non-covalent modification of chemically functionalized cyclodextrin with RGO is carried out by using pyrene adamantane as a linker wherever necessary, in order to construct a supramolecular assembly. The chemical functionality on cyclodextrin is varied utilising the principle of selective chemical modification of cyclodextrin.

View Article and Find Full Text PDF

Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix.

View Article and Find Full Text PDF

Polymer-SPION hybrids were investigated for receptor-mediated localization in tumour tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) prepared by high-temperature decomposition of iron acetylacetonate were monodisperse (9.27 ± 3.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) show great potential as alternative therapeutic agents to conventional antibiotics as they can selectively bind and eliminate pathogenic bacteria without harming eukaryotic cells. It is of interest to develop synthetic macromolecules that mimic AMPs behavior, but that can be produced more economically at commercial scale. Herein, we describe the use of aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare primary and tertiary amine-containing polymers with precise molecular weight control and narrow molecular weight distributions.

View Article and Find Full Text PDF

Aim: The aim of this study is to evaluate the residual monomer content and polymerization shrinkage of a packable composite (Surefil) and an ormocer (Admira).

Materials And Methods: The study was conducted in two parts. In Part I, 10 samples of each material were prepared in a standardized split brass mould, using incremental curing technique.

View Article and Find Full Text PDF

Novel interpenetrating polymer network (IPN) nanogels composed of poly(acrylic acid) and gelatin were synthesised by one pot inverse miniemulsion (IME) technique. This is based on the concept of nanoreactor and cross-checked from template polymerization technique. Acrylic acid (AA) monomer stabilized around the gelatin macromolecules in each droplet was polymerized using ammonium persulfate (APS) and tetramethyl ethylene diamine (TEMED) in 1:5 molar ratio and cross-linked with N,N-methylene bisacrylamide (BIS) to form semi-IPN (sIPN) nanogels, which were sequentially cross-linked using glutaraldehyde (Glu) to form IPNs.

View Article and Find Full Text PDF

Interpenetrating network hydrogels (IPNs) based on poly(acrylic acid) and gelatin (Ge) were evaluated for in vitro and in vivo biodegradation and in vivo release of gentamicin sulphate. In vitro and in vivo degradation studies demonstrated that with the increase of acrylic acid content in the polymer, the rate of degradation decreases, and a reverse phenomenon was observed with increasing Ge content in the hydrogel. The rate of in vivo degradation was much lower than in vitro degradation.

View Article and Find Full Text PDF

Hydrogels based on poly(acrylic acid) and gelatin crosslinked with N,N'-methylene bisacrylamide (0.5mol%) and glutaraldehyde (4%), respectively, forming an interpenetrating network were employed as matrices, for studying the loading and release of gentamicin sulphate. The release kinetics of gentamicin sulphate was evaluated in water (pH approximately 5.

View Article and Find Full Text PDF