Publications by authors named "Veen G"

Intensive agriculture for food and feed production is a key driver of global biodiversity loss. It is generally assumed that more extensive practices are needed to reconcile food production with biodiversity conservation. In a literature review across biomes and for seven taxa, we retrieved 35 alternative practices (e.

View Article and Find Full Text PDF

Monitoring agriculture by remote sensing enables large-scale evaluation of biomass production across space and time. The normalized difference vegetation index (NDVI) is used as a proxy for green biomass. Here, we used satellite-derived NDVI of arable farms in the Netherlands to evaluate changes in biomass following conversion from conventional to organic farming.

View Article and Find Full Text PDF
Article Synopsis
  • * Sites with warmer, wetter conditions and more species generally saw increased biomass, while arid, species-poor areas experienced declines, alongside notable changes in seasonal plant growth patterns.
  • * Factors like grazing and nutrient input didn't consistently predict biomass changes, indicating that grasslands are undergoing substantial transformations that could affect food security, biodiversity, and carbon storage, particularly in dry regions.
View Article and Find Full Text PDF

Background: Declines in plant biodiversity often have negative consequences for plant community productivity, and it becomes increasingly acknowledged that this may be driven by shifts in soil microbial communities. So far, the role of fungal communities in driving tree diversity-productivity relationships has been well assessed in forests. However, the role of bacteria and archaea, which are also highly abundant in forest soils and perform pivotal ecosystem functions, has been less investigated in this context.

View Article and Find Full Text PDF

Consumer concern for animal welfare is currently not fully reflected in the market share of welfare-enhanced meat. A possible solution is developing marketing strategies that emphasize personally relevant benefits such as taste and curiosity, instead of having a sole focus on sustainability-related benefits, since existing research indicates that the former are more appealing to most consumers. This study tests strategies positioning welfare-enhanced meat as personally relevant in a real-life experiment and how consumer attitudes towards eating meat influence reactions to the positioning strategies.

View Article and Find Full Text PDF

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients.

View Article and Find Full Text PDF

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship.

View Article and Find Full Text PDF

FETAL ALCOHOL SPECTRUM DISORDERS (FASDS) IS A CONDITION THAT IS PROBABLY OFTEN MISSED. THIS SYNDROME IS BASED ON FEATURES IN FOUR DOMAINS: 1. REDUCED HEIGHT AND WEIGHT GROWTH, 2.

View Article and Find Full Text PDF

Climate change is causing range shifts of many species to higher latitudes and altitudes and increasing their exposure to extreme weather events. It has been shown that range-shifting plant species may perform differently in new soil than related natives; however, little is known about how extreme weather events affect range-expanding plants compared to related natives. In this study we used outdoor mesocosms to study how range-expanding plant species responded to extreme drought in live soil from a habitat in a new range with and without live soil from a habitat in the original range (Hungary).

View Article and Find Full Text PDF

Soils contain biotic and abiotic legacies of previous conditions that may influence plant community biomass and associated aboveground biodiversity. However, little is known about the relative strengths and interactions of the various belowground legacies on aboveground plant-insect interactions. We used an outdoor mesocosm experiment to investigate the belowground legacy effects of range-expanding versus native plants, extreme drought and their interactions on plants, aphids and pollinators.

View Article and Find Full Text PDF

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance.

View Article and Find Full Text PDF

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied.

View Article and Find Full Text PDF

Ecological models predict that the effects of mammalian herbivore exclusion on plant diversity depend on resource availability and plant exposure to ungulate grazing over evolutionary time. Using an experiment replicated in 57 grasslands on six continents, with contrasting evolutionary history of grazing, we tested how resources (mean annual precipitation and soil nutrients) determine herbivore exclusion effects on plant diversity, richness and evenness. Here we show that at sites with a long history of ungulate grazing, herbivore exclusion reduced plant diversity by reducing both richness and evenness and the responses of richness and diversity to herbivore exclusion decreased with mean annual precipitation.

View Article and Find Full Text PDF

It is generally assumed that the dependence of conventional agriculture on artificial fertilizers and pesticides strongly impacts the environment, while organic agriculture relying more on microbial functioning may mitigate these impacts. However, it is not well known how microbial diversity and community composition change in conventionally managed farmers' fields that are converted to organic management. Here, we sequenced bacterial and fungal communities of 34 organic fields on sand and marine clay soils in a time series (chronosequence) covering 25 years of conversion.

View Article and Find Full Text PDF

Precision and accuracy of quantitative scanning transmission electron microscopy (STEM) methods such as ptychography, and the mapping of electric, magnetic, and strain fields depend on the dose. Reasonable acquisition time requires high beam current and the ability to quantitatively detect both large and minute changes in signal. A new hybrid pixel array detector (PAD), the second-generation Electron Microscope Pixel Array Detector (EMPAD-G2), addresses this challenge by advancing the technology of a previous generation PAD, the EMPAD.

View Article and Find Full Text PDF
Article Synopsis
  • Research discusses how current global climate models are based on air temperatures but fail to capture the soil temperatures beneath vegetation where many species thrive.
  • New global maps present soil temperature and bioclimatic variables at 1-km resolution for specific depths, revealing that mean annual soil temperatures can differ significantly from air temperatures by up to 10°C.
  • The findings indicate that relying on air temperature could misrepresent climate impacts on ecosystems, especially in colder regions, highlighting the need for more precise soil temperature data for ecological studies.
View Article and Find Full Text PDF

Organisms throughout the tree of life accumulate chemical resources, in particular forms or compartments, to secure their availability for future use. Here we review microbial storage and its ecological significance by assembling several rich but disconnected lines of research in microbiology, biogeochemistry, and the ecology of macroscopic organisms. Evidence is drawn from various systems, but we pay particular attention to soils, where microorganisms play crucial roles in global element cycles.

View Article and Find Full Text PDF

The Oregon Health Authority routinely investigates clusters of reportable enteric diseases identified by whole-genome sequencing. While investigating 2 cases of O157:H7 in 2019, in which both patients were exposed to the same home-processed "jerky" and clinical isolates matched within 2 single nucleotide polymorphisms (SNPs), we discovered, by searching the National Library of Medicine's National Center for Biotechnology Information website, 3 other cases of O157:H7 from 3 Oregon counties-Tillamook, Umatilla, and Douglas-whose clinical isolates were within 9 SNPs of the 2 initial matched cases. We analyzed interview data for 3 case patients and followed up with additional hypothesis-generating questions.

View Article and Find Full Text PDF
Article Synopsis
  • Standing dead trees, or snags, decompose more slowly than fallen wood and serve as vital habitats for various species, influencing forest carbon dynamics and biodiversity.
  • The rate at which these snags fall is significantly linked to temperature, with warmer climates fostering quicker decomposition and impacting the stability of standing trees.
  • Research shows that higher termite activity in warmer areas leads to faster snag fall, suggesting that the interaction between microbes and termites in wood decomposition can affect forest structure and ecological health amid climate change.
View Article and Find Full Text PDF

Plants often associate with specialized decomposer communities that increase plant litter breakdown, a phenomenon that is known as the 'home-field advantage' (HFA). Although the concept of HFA has long considered only the role of the soil microbial community, explicit consideration of the role of the microbial community on the foliage before litter fall (i.e.

View Article and Find Full Text PDF

Plant-soil feedback (PSF) and diversity-productivity relationships are important research fields to study drivers and consequences of changes in plant biodiversity. While studies suggest that positive plant diversity-productivity relationships can be explained by variation in PSF in diverse plant communities, key questions on their temporal relationships remain. Here, we discuss three processes that change PSF over time in diverse plant communities, and their effects on temporal dynamics of diversity-productivity relationships: spatial redistribution and changes in dominance of plant species; phenotypic shifts in plant traits; and dilution of soil pathogens and increase in soil mutualists.

View Article and Find Full Text PDF

Soil bacteria and fungi are key drivers of carbon released from soils to the atmosphere through decomposition of plant-derived organic carbon sources. This process has important consequences for the global climate. While global change factors, such as increased temperature, are known to affect bacterial- and fungal-mediated decomposition rates, the role of trophic interactions in affecting decomposition remains largely unknown.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) strongly affect ecosystem functioning. To understand and quantify the mechanisms of this control, knowledge about the relationship between the actual abundance and community composition of AMF in the soil and in plant roots is needed. We collected soil and root samples in a natural dune grassland to test whether, across a plant community, the abundance of AMF in host roots (measured as the total length of roots colonized) is related to soil AMF abundance (using the neutral lipid fatty acids (NLFA) 16:1ω5 as proxy).

View Article and Find Full Text PDF