Background: Obesity is associated with the development and progression of osteoarthritis (OA). Although the infrapatellar fat pad (IFP) could be involved in this association, due to its intracapsular localization in the knee joint, there is currently little known about the effect of obesity on the IFP. Therefore, we investigated cellular and molecular body mass index (BMI)-related features in the IFP of OA patients.
View Article and Find Full Text PDFObjective: To get a better understanding of inflammatory pathways active in the osteoarthritic (OA) joint, we characterized and compared inflammatory cells in the synovium and the infrapatellar fat pad (IFP) of patients with knee OA.
Methods: Infiltrating immune cells were characterized by flow cytometry in 76 patients with knee OA (mean age 63.3, 52% women, median body mass index 28.
Previous studies have shown accumulation and an enhanced proinflammatory profile of macrophages in adipose tissue of obese mice, indicating the presence of an interaction between adipocytes and macrophages in this tissue. However, the consequences of this interaction in humans are yet incompletely understood. In this study, we explored the modulating effects of adipocytes on the phenotype of macrophages in humans and studied the possible molecular pathways involved.
View Article and Find Full Text PDFObjective: Evidence is accumulating that synovial tissue plays an active role in osteoarthritis (OA), however, exact understanding of its contribution is lacking. In order to further elucidate its role in the OA process, we aimed to identify the secretion pattern of soluble mediators by synovial tissue and to assess its ability to initiate cartilage degeneration.
Methods: Synovial tissue explants (STEs) obtained from donors without history of OA (n = 8) or from end stage OA patients (n = 16) were cultured alone or together with bovine cartilage explants in the absence or presence of IL-1α.
Objective: In addition to improve glucose intolerance, recent studies suggest that glucagon-like peptide-1 (GLP-1) receptor agonism also decreases triglyceride (TG) levels. The aim of this study was to evaluate the effect of GLP-1 receptor agonism on very-low-density lipoprotein (VLDL)-TG production and liver TG metabolism.
Experimental Approach: The GLP-1 peptide analogues CNTO3649 and exendin-4 were continuously administered subcutaneously to high fat diet-fed APOE*3-Leiden transgenic mice.
Background: Infrapatellar fat pad (IPFP) might be involved in osteoarthritis (OA) by production of cytokines. It was hypothesised that production of cytokines is sensitive to environmental conditions.
Objectives: To evaluate cytokine production by IPFP in response to interleukin (IL)1β and investigate the ability to modulate this response with an agonist for peroxisome proliferator activated receptor α (PPARα), which is also activated by lipid-lowering drugs such as fibrates.
Objective: Adipose tissue is known to release inflammatory cytokines and growth factors. In this exploratory study, the authors examined whether the infrapatellar fat pad (IPFP) closely located to cartilage in the knee joint can affect cartilage metabolism. In addition, the authors analysed whether the macrophage types present in IPFP could explain the effect on cartilage.
View Article and Find Full Text PDFObjective: To investigate the association between weight or body mass index (BMI) and the development of hand osteoarthritis.
Methods: Systematic review of observational studies. Medical databases were searched up to April 2008.
J Pharmacol Exp Ther
January 2009
CNTO736 is a glucagon-like peptide (GLP) 1 receptor agonist that incorporates a GLP-1 peptide analog linked to the Mimetibody platform. We evaluate the potential of acute and chronic CNTO736 treatment on insulin sensitivity and very low-density lipoprotein (VLDL) metabolism. For acute studies, diet-induced insulin-resistant C57BL/6 mice received a single intraperitoneal injection of CNTO736 or vehicle.
View Article and Find Full Text PDFObjective: We have developed a novel platform for display and delivery of bioactive peptides that links the biological properties of the peptide to the pharmacokinetic properties of an antibody. Peptides engineered in the MIMETIBODY platform have improved biochemical and biophysical properties that are quite distinct from those of Fc-fusion proteins. CNTO736 is a glucagon-like peptide 1 (GLP-1) receptor agonist engineered in our MIMETIBODY platform.
View Article and Find Full Text PDF