Rationale: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease, and development of novel therapeutics requires an understanding of pathophysiologic phenotypes.
Objectives: The purpose of the Airways Disease Endotyping for Personalized Therapeutics (ADEPT) study was to correlate clinical features and biomarkers with molecular characteristics in a well-profiled COPD cohort.
Methods: A total of 67 COPD subjects (forced expiratory volume in the first second of expiration [FEV]: 45%-80% predicted) and 63 healthy smoking and nonsmoking controls underwent multiple assessments including patient questionnaires, lung function, and clinical biomarkers including fractional exhaled nitric oxide (FENO), induced sputum, and blood.
Background: Asthma is a disease of varying severity and differing disease mechanisms. To date, studies aimed at stratifying asthma into clinically useful phenotypes have produced a number of phenotypes that have yet to be assessed for stability and to be validated in independent cohorts. The aim of this study was to define and validate, for the first time ever, clinically driven asthma phenotypes using two independent, severe asthma cohorts: ADEPT and U-BIOPRED.
View Article and Find Full Text PDFBackground: ADEPT (Airways Disease Endotyping for Personalized Therapeutics) and U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcome Consortium) are independent asthma biomarker studies that aim to enable personalization of therapies.
Methods: Patients in both studies were identified by similar criteria, and similar clinical parameters and biomarkers were assessed in blood, sputum, and airway samples. Fuzzy partition-around-medoid clustering was performed on the ADEPT dataset (n = 154) and independently on the U-BIOPRED asthma dataset (n = 82), filtered to match ADEPT inclusion criteria.
Preadipocytes secrete several WNT family proteins that act through autocrine/paracrine mechanisms to inhibit adipogenesis. The activity of WNT ligands is often decreased by secreted frizzled-related proteins (SFRPs). Sfrp5 is strongly induced during adipocyte differentiation and increases in adipocytes during obesity, presumably to counteract WNT signaling.
View Article and Find Full Text PDFObjective: Emerging evidence suggests a link between innate immunity and development of type 2 diabetes mellitus (T2D); however, the molecular mechanisms linking them are not fully understood. Toll-like Receptor 3 (TLR3) is a pathogen pattern recognition receptor that recognizes the double-stranded RNA of microbial or mammalian origin and contributes to immune responses in the context of infections and chronic inflammation. The objective of this study was to determine whether TLR3 activity impacts insulin sensitivity and lipid metabolism.
View Article and Find Full Text PDFThe Wnt family of secreted signaling molecules has profound effects on diverse developmental processes, including the fate of mesenchymal progenitors. While activation of Wnt signaling blocks adipogenesis, inhibition of endogenous Wnt/beta-catenin signaling by Wnt10b promotes spontaneous preadipocyte differentiation. Transgenic mice with expression of Wnt10b from the FABP4 promoter (FABP4-Wnt10b) have less adipose tissue when maintained on a normal chow diet and are resistant to diet-induced obesity.
View Article and Find Full Text PDF