Study of ecosystems has always been an interesting topic in the view of real-world dynamics. In this paper, we propose a fractional-order nonlinear mathematical model to describe the prelude of deteriorating quality of water cause of greenhouse gases on the population of aquatic animals. In the proposed system, we recall that greenhouse gases raise the temperature of water, and because of this reason, the dissolved oxygen level goes down, and also the rate of circulation of disintegrated oxygen by the aquatic animals rises, which causes a decrement in the density of aquatic species.
View Article and Find Full Text PDFAdv Contin Discret Model
January 2022
We analyze a time-delay Caputo-type fractional mathematical model containing the infection rate of Beddington-DeAngelis functional response to study the structure of a vector-borne plant epidemic. We prove the unique global solution existence for the given delay mathematical model by using fixed point results. We use the Adams-Bashforth-Moulton P-C algorithm for solving the given dynamical model.
View Article and Find Full Text PDFThe main purpose of this paper is to provide new vaccinated models of COVID-19 in the sense of Caputo-Fabrizio and new generalized Caputo-type fractional derivatives. The formulation of the given models is presented including an exhaustive study of the model dynamics such as positivity, boundedness of the solutions and local stability analysis. Furthermore, the unique solution existence for the proposed fractional order models is discussed via fixed point theory.
View Article and Find Full Text PDFIn this study, our aim is to explore the dynamics of COVID-19 or 2019-nCOV in Argentina considering the parameter values based on the real data of this virus from 03, 2020 to 29, 2021 which is a data range of more than one complete year. We propose a Atangana-Baleanu type fractional-order model and simulate it by using predictor-corrector (P-C) method. First we introduce the biological nature of this virus in theoretical way and then formulate a mathematical model to define its dynamics.
View Article and Find Full Text PDFThe most dangerous disease of this decade or COVID-19 is yet not over. The whole world is facing this threat and trying to stand together to defeat this pandemic. Many countries have defeated this virus by their strong control strategies and many are still trying to do so.
View Article and Find Full Text PDFMath Methods Appl Sci
February 2021
The first symptomatic infected individuals of coronavirus (Covid-19) was confirmed in December 2020 in the city of Wuhan, China. In India, the first reported case of Covid-19 was confirmed on 30 January 2020. Today, coronavirus has been spread out all over the world.
View Article and Find Full Text PDFChaos Solitons Fractals
April 2021
When the entire world is eagerly waiting for a safe, effective and widely available COVID-19 vaccine, unprecedented spikes of new cases are evident in numerous countries. To gain a deeper understanding about the future dynamics of COVID-19, a compartmental mathematical model has been proposed in this paper incorporating all possible non-pharmaceutical intervention strategies. Model parameters have been calibrated using sophisticated trust-region-reflective algorithm and short-term projection results have been illustrated for Bangladesh and India.
View Article and Find Full Text PDFMath Methods Appl Sci
October 2020
Novel coronavirus (COVID-19), a global threat whose source is not correctly yet known, was firstly recognised in the city of Wuhan, China, in December 2019. Now, this disease has been spread out to many countries in all over the world. In this paper, we solved a time delay fractional COVID-19 SEIR epidemic model via Caputo fractional derivatives using a predictor-corrector method.
View Article and Find Full Text PDFChaos Solitons Fractals
October 2020
In this manuscript, we solve a model of the novel coronavirus (COVID-19) epidemic by using Corrector-predictor scheme. For the considered system exemplifying the model of COVID-19, the solution is established within the frame of the new generalized Caputo type fractional derivative. The existence and uniqueness analysis of the given initial value problem are established by the help of some important fixed point theorems like Schauder's second and Weissinger's theorems.
View Article and Find Full Text PDFIn this work, we formulate and analyze a new mathematical model for COVID-19 epidemic with isolated class in fractional order. This model is described by a system of fractional-order differential equations model and includes five classes, namely, (susceptible class), (exposed class), (infected class), (isolated class), and (recovered class). Dynamics and numerical approximations for the proposed fractional-order model are studied.
View Article and Find Full Text PDFThe deadly coronavirus continues to spread across the globe, and mathematical models can be used to show suspected, recovered, and deceased coronavirus patients, as well as how many people have been tested. Researchers still do not know definitively whether surviving a COVID-19 infection means you gain long-lasting immunity and, if so, for how long? In order to understand, we think that this study may lead to better guessing the spread of this pandemic in future. We develop a mathematical model to present the dynamical behavior of COVID-19 infection by incorporating isolation class.
View Article and Find Full Text PDFIn this work, we consider giving up smoking dynamic on adolescent nicotine dependence. First, we use the Caputo derivative to develop the model in fractional order. Then we apply two different numerical methods to compute accurate approximate solutions of this new model in fractional order and compare their results.
View Article and Find Full Text PDF