Stacking ferroelectricity (SFE) has been discovered in a wide range of van der Waals materials and holds promise for applications, including photovoltaics and high-density memory devices. We show that the microscopic origin of out-of-plane stacking ferroelectric polarization can be generally understood as a consequence of a nontrivial Berry phase borne out of an effective Su-Schrieffer-Heeger model description with broken sublattice symmetry, thus elucidating the quantum-geometric origin of polarization in the extremely nonperiodic bilayer limit. Our theory applies to known stacking ferroelectrics such as bilayer transition-metal dichalcogenides in 3R and T_{d} phases, as well as general AB-stacked honeycomb bilayers with staggered sublattice potential.
View Article and Find Full Text PDFWe propose a novel qubit architecture based on a planar c-axis Josephson junction between a thin flake d-wave superconductor, such as a high-T_{c} cuprate Bi_{2}Sr_{2}CaCu_{2}O_{8+x}, and a conventional s-wave superconductor. When operated in the transmon regime the device-that we call "d mon"-becomes insensitive to offset charge fluctuations and, importantly, exhibits at the same time energy level spectrum with strong anharmonicity that is widely tunable through the device geometry and applied magnetic flux. Crucially, unlike previous qubit designs based on d-wave superconductors the proposed device operates in a regime where quasiparticles are fully gapped and can be therefore expected to achieve long coherence times.
View Article and Find Full Text PDF