Publications by authors named "Vedangana Saini"

Neuroplastic alterations are the key processes involved in adaptation and rehabilitation after all neurological injuries and pathologies. Being the central contributor to the developmental and adult neuroplasticity, the polysialylated form of Neural Cell Adhesion Molecule (PSA-NCAM) may prove to be a potential target to facilitate repair/regeneration after CNS injury and disease. Over the years, several experimental approaches have been developed to exploit the therapeutic potential of PSA-NCAM.

View Article and Find Full Text PDF

Polysialic acid (PSA) is crucial for the induction and maintenance of nervous system plasticity and repair after injury. In order to exploit the immense therapeutic potential of PSA, previous studies have focused on the identification and development of peptide-based or synthetic PSA mimetics. 5-Nonyloxytryptamine (5-NOT) has been previously reported as a PSA-mimicking compound for promoting functional recovery after spinal cord injury in mice.

View Article and Find Full Text PDF

One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity.

View Article and Find Full Text PDF

Polysialic acid (PSA) is a large, negatively charged, linear homopolymer of alpha2-8-linked sialic acid residues. It is generated by two polysialyltransferases and attached to N- and/or O-linked glycans, and its main carrier is the neural cell adhesion molecule (NCAM). PSA controls the development and regeneration of the nervous system by enhancing cell migration, axon pathfinding, synaptic targeting, synaptic plasticity, by regulating the differentiation of progenitor cells and by modulating cell-cell and cell-matrix adhesions.

View Article and Find Full Text PDF

Sleep is a profound regulator of cellular immunity, and the curtailment of sleep in present day lifestyle leads to disruption of neuro-immune-endocrine interactions. No therapeutic remedy is yet known for the amelioration of detrimental effects caused by sleep deprivation (SD). The current study was aimed to elucidate the effects of acute SD on immune function and its modulation by water extract from leaves of Withania somnifera (ASH-WEX).

View Article and Find Full Text PDF

The change in the therapeutic targets from neuron to glia has proved beneficial in the treatment of many psychiatric disorders. The anti-epileptic drugs (AEDs) have been widely prescribed for the treatment of partial and complete seizures, bipolar disorder among others. The current study was carried out to explore the efficacy of some conventional and novel AEDs for the treatment of tumor-associated epilepsy which develops in 29-49% of the patients diagnosed with brain tumors.

View Article and Find Full Text PDF

Polysialic acid (PSA) is a large negatively charged glycan mainly attached to the neural cell adhesion molecule (NCAM). Several studies have shown that it is important for correct formation of brain circuitries during development and for synaptic plasticity, learning and memory in the adult. PSA also plays a major role in nervous system regeneration following injury.

View Article and Find Full Text PDF

The neural cell adhesion molecule (NCAM) plays important functional roles in development of the nervous system. We investigated the influence of a constitutive ablation of NCAM on the outcome of spinal cord injury. Transgenic mice lacking NCAM (NCAM-/-) were subjected to severe compression injury of the lower thoracic spinal cord using wild-type (NCAM+/+) littermates as controls.

View Article and Find Full Text PDF

Sleep deprivation (SD) leads to the spectrum of mood disorders like anxiety, cognitive dysfunctions and motor coordination impairment in many individuals. However, there is no effective pharmacological remedy to negate the effects of SD. The current study examined whether 50% ethanolic extract of Tinospora cordifolia (TCE) can attenuate these negative effects of SD.

View Article and Find Full Text PDF

Polysialic acid (PSA), a large, linear glycan composed of 8 to over 100 α2,8-linked sialic acid residues, modulates development of the nervous system by enhancing cell migration, axon pathfinding, and synaptic targeting and by regulating differentiation of progenitor cells. PSA also functions in developing and adult immune systems and is a signature of many cancers. In this study we identified vinorelbine, a semi-synthetic third generation vinca alkaloid, and epirubicin, an anthracycline and 4'-epimer of doxorubicin, as PSA mimetics.

View Article and Find Full Text PDF

Polysialic acid (PSA) is a major regulator of cell-cell interactions in the developing nervous system and in neural plasticity in the adult. As a polyanionic molecule with high water-binding capacity, PSA increases the intercellular space generating permissive conditions for cell motility. PSA enhances stem cell migration and axon path finding and promotes repair in the lesioned peripheral and central nervous systems, thus contributing to regeneration.

View Article and Find Full Text PDF