Interfacing of microfluidic devices to mass spectrometry has challenges including dilution from sheath liquid junctions, fragile electrodes, and excessive dead volumes which prevent optimum performance and common use. The goal of this work is to develop a stable nanospray chip-MS interface that contains easily integrated electrodes and an embedded capillary emitter to mitigate current chip-MS problems. This system uses a hybrid polystyrene-poly(dimethylsiloxane) (PS-PDMS) microfluidic platform with an embedded electrode and integrated capillary emitter used as the nanospray interface.
View Article and Find Full Text PDFIn this paper, an approach to fabricate epoxy or polystyrene microdevices with encapsulated tubing and electrodes is described. Key features of this approach include a fixed alignment between the fluidic tubing and electrodes, the ability to polish the device when desired, and the low dead volume nature of the fluidic interconnects. It is shown that a variety of tubing can be encapsulated with this approach, including fused silica capillary, polyetheretherketone (PEEK), and perfluoroalkoxy (PFA), with the resulting tubing/microchip interface not leading to significant band broadening or plug dilution.
View Article and Find Full Text PDF