Angiogenesis, or the formation of new microvessels, is often encountered in pathological situations. A fibrinous exudate can often act as a temporary matrix for the ingrowth of these new microvessels. This matrix consists mainly of fibrin, but is mingled with other plasma components and interstitial collagen fibres.
View Article and Find Full Text PDFThe endometrium is a tissue unique for its cyclic destruction and rapid regeneration of blood vessels. Angiogenesis, indispensable for the regeneration process, provides a richly vascularized, receptive endometrium fundamental for implantation, placentation, and embryogenesis. Human endometrial microvascular endothelial cells (hEMVEC) were isolated to better understand the properties and angiogenic behavior of these cells.
View Article and Find Full Text PDFAmong other proteolytic enzymes, the urokinase-type plasminogen activator (u-PA)/plasmin cascade contributes to cell migration and the formation of capillary-like structures in a fibrinous exudate. The u-PA receptor (u-PAR) focuses proteolytical activity on the cell surface of the endothelial cell and hereby accelerates the pericellular matrix degradation. Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)-2 enhance u-PA receptor expression in human endothelial cells.
View Article and Find Full Text PDFHypoxia in combination with a growth factor is a strong inducer of angiogenesis. Among several effects, hypoxia can activate endothelial cells directly, but the mechanism by which it acts is not fully elucidated. In vitro, human microvascular endothelial cells (hMVEC) form capillary-like tubules in fibrin solely after stimulation with a combination of fibroblast growth factor (FGF)-2 or vascular endothelial growth factor (VEGF) and the cytokine tumour necrosis factor (TNF)alpha.
View Article and Find Full Text PDFHypoxia stimulates angiogenesis, the formation of new blood vessels. This study evaluates the direct effect of hypoxia (1% oxygen) on the angiogenic response of human microvascular endothelial cells (hMVECs) seeded on top of a 3-dimensional fibrin matrix. hMVECs stimulated with fibroblast growth factor-2 (FGF-2) or vascular endothelial growth factor (VEGF) together with tumor necrosis factor-alpha (TNF-alpha) formed 2- to 3-fold more tubular structures under hypoxic conditions than in normoxic (20% oxygen) conditions.
View Article and Find Full Text PDFEur J Cancer Clin Oncol
December 1985