Nanostructured materials with antibacterial activity face the same threat as conventional antibiotics - bacterial resistance, which reduces their effectiveness. However, unlike antibiotics, research into the emergence and mechanisms of bacterial resistance to antibacterial nanomaterials is still in its early stages. Here we show how Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria develop resistance to silver nanoparticles, resulting in an increase in the minimum inhibitory concentration from 1.
View Article and Find Full Text PDFThe outbreak of antibiotic-resistant bacteria, or "superbugs", poses a global public health hazard due to their resilience against the most effective last-line antibiotics. Identifying potent antibacterial agents capable of evading bacterial resistance mechanisms represents the ultimate defense strategy. This study shows that -the otherwise essential micronutrient- manganese turns into a broad-spectrum potent antibiotic when coordinated with a carboxylated nitrogen-doped graphene.
View Article and Find Full Text PDFThe alarming rise of bacterial antibiotic resistance requires the development of new compounds. Such compounds, lipophosphonoxins (LPPOs), were previously reported to be active against numerous bacterial species, but serum albumins abolished their activity. Here we describe the synthesis and evaluation of novel antibacterial compounds termed LEGO-LPPOs, loosely based on LPPOs, consisting of a central linker module with two attached connector modules on either side.
View Article and Find Full Text PDFBackground and Objectives: Given the limited knowledge of antibody responses to COVID-19 and their determinants, we analyzed the relationship between the occurrence of acute-phase symptoms and infection-induced immunoglobulin (Ig) G seropositivity up to 8 months post-symptom onset. Materials and Methods: In this cross-sectional study, 661 middle-aged unvaccinated healthcare workers (HCWs) were interviewed about the presence of symptoms during the acute phase of their previously confirmed COVID-19 and were tested for specific IgG, targeting the spike protein (S1 and S2). The dependence of seropositivity on the symptom occurrence was explored through multiple logistic regression, adjusted for the interval between symptom onset and serology testing, and through classification and regression trees.
View Article and Find Full Text PDFThe number of antibiotic-resistant bacterial strains is increasing due to the excessive and inappropriate use of antibiotics, which are therefore becoming ineffective. Here, we report an effective way of enhancing and restoring the antibacterial activity of inactive antibiotics by applying them together with a cyanographene/Ag nanohybrid, a nanomaterial that is applied for the first time for restoring the antibacterial activity of antibiotics. The cyanographene/Ag nanohybrid was synthesized by chemical reduction of a precursor material in which silver cations are coordinated on a cyanographene sheet.
View Article and Find Full Text PDFObjectives: Although the incidence of measles has decreased globally since the introduction of regular vaccination, its frequency has increased again in recent years. The study is focused on data from the Olomouc Region in the Czech Republic analyzed in four laboratories. The obtained results were compared with already published data.
View Article and Find Full Text PDF(1) Background: The root canal system has complex anatomical and histological features that make it impossible to completely remove all bacteria by mechanical means only; they must be supplemented with disinfectant irrigation. Current disinfectants are unable to eliminate certain microorganisms that persist in the root canal, resulting in treatment failure. At the Institute of Organic Chemistry and Biochemistry, Prague, novel substances with the bactericidal effect, termed lipophosphonoxins (LPPOs), have been discovered.
View Article and Find Full Text PDFEpidemiol Mikrobiol Imunol
August 2021
Introduction: The increase in measles cases in early 2019 led to the implementation of several preventive measures focused mainly on health care providers. The study aimed to evaluate the seroprevalence of measles antibodies among employees of a large hospital and, a year apart, the rate of seroconversion in a pilot sample of the revaccinated subjects.
Methods: In 3027 employees of the University Hospital Olomouc, specific immunoglobulin G levels were tested on a voluntary basis.
The ability of bacteria to develop resistance to antibiotics is threatening one of the pillars of modern medicine. It was recently understood that bacteria can develop resistance even to silver nanoparticles by starting to produce flagellin, a protein which induces their aggregation and deactivation. This study shows that silver covalently bound to cyanographene (GCN/Ag) kills silver-nanoparticle-resistant bacteria at concentrations 30 times lower than silver nanoparticles, a challenge which has been so far unmet.
View Article and Find Full Text PDFLipophosphonoxins (LPPOs) are small modular synthetic antibacterial compounds that target the cytoplasmic membrane. First-generation LPPOs (LPPO I) exhibit an antimicrobial activity against Gram-positive bacteria; however they do not exhibit any activity against Gram-negatives. Second-generation LPPOs (LPPO II) also exhibit broadened activity against Gram-negatives.
View Article and Find Full Text PDFPhotodynamic inactivation (PDI) is a promising approach for the efficient killing of pathogenic microbes. In this study, the photodynamic effect of sulfonated polystyrene nanoparticles with encapsulated hydrophobic 5,10,15,20-tetraphenylporphyrin (TPP-NP) photosensitizers on Gram-positive (including multi-resistant) and Gram-negative bacterial strains was investigated. The cell viability was determined by the colony forming unit method.
View Article and Find Full Text PDFTargeted and effective therapy of diseases demands utilization of rapid methods of identification of the given markers. Surface enhanced Raman spectroscopy (SERS) in conjunction with streptavidin-biotin complex is a promising alternative to culture or PCR based methods used for such purposes. Many biotinylated antibodies are available on the market and so this system offers a powerful tool for many analytical applications.
View Article and Find Full Text PDFThe use of Ag-modified nanomaterials continues to attract attention in biological contamination control, their potential cytotoxicity is often overlooked. Herein, biocompatible carbon nitride is modified with 1 and 5 wt.% Ag and effects of different nanomaterial dose and Ag content on antimicrobial activity and cytotoxicity is studied.
View Article and Find Full Text PDFSuccessful surgeries involving orthopedic implants depend on the avoidance of biofilm development on the implant surface during the early postoperative period. Here, we investigate the potential of novel antibacterial compounds-second-generation lipophosphonoxins (LPPOs II)-as additives to surgical bone cements. We demonstrate (i) excellent thermostability of LPPOs II, which is essential to withstand elevated temperatures during exothermic cement polymerization; (ii) unchanged tensile strength and elongation at the break properties of the composite cements containing LPPOs II compared to cements without additives; (iii) convenient elution kinetics on the order of days; and (iv) the strong antibiofilm activity of the LPPO II-loaded cements even against bacteria resistant to the medicinally utilized antibiotic, gentamicin.
View Article and Find Full Text PDFContamination of cell cultures by mycoplasmas is a very common phenomenon. As they can substantially alter cell metabolism and potentially spread to all cell cultures in laboratory, their early detection is necessary. One of the fastest and cheapest methods of mycoplasma detection relies on the direct staining of mycoplasmas' DNA by DAPI or Hoechst dyes.
View Article and Find Full Text PDFActa Chir Orthop Traumatol Cech
August 2019
PURPOSE OF THE STUDY Nano-structuring and nano-silver have been extensively studied for improving the antibacterial ability of implants due to their powerful antibacterial activity; however, there is no clinical application as yet. The aim of the study was to determine the antibacterial, antiadhesive and cytotoxic features of Ti6Al4V modified with nano-texturing and silver nano-particles. MATERIAL AND METHODS The nanoparticles were applied on polished and nano-textured Ti6Al4V using sonoreduction.
View Article and Find Full Text PDFThe increase in the number of bacterial strains resistant to known antibiotics is alarming. In this study we report the synthesis of novel compounds termed Lipophosphonoxins II (LPPO II). We show that LPPO II display excellent activities against Gram-positive and -negative bacteria, including pathogens and multiresistant strains.
View Article and Find Full Text PDFObjective: The aim was to evaluate the antibacterial effect of silver nanoparticles on anaerobic bacteria.
Material And Methods: The microdilution method was used to determine the minimum inhibitory concentrations (MICs) of 28 nm silver nanoparticles, both unstabilized and stabilized by casein, gelatin and polyacrylic acid. The following anaerobic bacteria were tested: Bacteroides fragilis, Bacteroides thetaiotaomicron, Eggerthella lenta, Propionibacterium acnes, Clostridium perfringens, Clostridium difficile and Fusobacterium varium.
Epidemiol Mikrobiol Imunol
October 2017
Objective: The study aimed at determining the ability of lipophosphonoxin DR5026 to inhibit the formation of bacterial biofilm on the bone cement surface and assessing potential development of bacterial resistance.
Material And Methods: Bone cement (Hi-Fatigue Bone Cement 2x40, aap Biomaterials GmbH, Germany) was polymerized with lipophosphonoxin DR5026. Cement samples were cultured using bacterial suspension containing Staphylococcus epidermidis CCM7221 at an inoculum density of 106 CFU/mL.
Bacterial resistance to conventional antibiotics is currently one of the most important healthcare issues, and has serious negative impacts on medical practice. This study presents a potential solution to this problem, using the strong synergistic effects of antibiotics combined with silver nanoparticles (NPs). Silver NPs inhibit bacterial growth via a multilevel mode of antibacterial action at concentrations ranging from a few ppm to tens of ppm.
View Article and Find Full Text PDFThe resistance of bacteria towards traditional antibiotics currently constitutes one of the most important health care issues with serious negative impacts in practice. Overcoming this issue can be achieved by using antibacterial agents with multimode antibacterial action. Silver nano-particles (AgNPs) are one of the well-known antibacterial substances showing such multimode antibacterial action.
View Article and Find Full Text PDFThe advantages offered by established antibiotics in the treatment of infectious diseases are endangered due to the increase in the number of antibiotic-resistant bacterial strains. This leads to a need for new antibacterial compounds. Recently, we discovered a series of compounds termed lipophosphonoxins (LPPOs) that exhibit selective cytotoxicity towards Gram-positive bacteria that include pathogens and resistant strains.
View Article and Find Full Text PDFThe diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions.
View Article and Find Full Text PDFThe potential for application of any nanoparticles, including silver nanoparticles (AgNPs), is strongly dependent on their stability against aggregation. Therefore, improvement of this parameter is a key task, especially in the case of AgNPs, because a correlation between size and biological activity has been demonstrated. In the present work, a natural stabilizer, gelatin, was investigated for the stabilization of AgNPs in an aqueous dispersion.
View Article and Find Full Text PDF