Publications by authors named "Veale M"

Background: Foot and ankle arthrodesis procedures are frequently performed in concert with the utilization of bone grafts. However, the availability of autologous bone is often limited, inaccessible, or not suitable, thus there is a need for bone graft substitutes with equally effective clinical outcomes. A next generation integrative bone matrix (IBM) has been developed that has intrinsic osteogenic, osteoconductive, and osteoinductive characteristics, and is a promising solution to mitigate complications such as nonunion and reduce the need for autologous bone graft harvest.

View Article and Find Full Text PDF

Background: Total ankle arthroplasty (TAA) has become increasingly popular in the treatment for end-stage ankle arthritis in recent decades. However, there is limited evidence regarding the long-term clinical outcomes and complication rates of modern TAA implants.

Methods: This study presents a follow-up on a previous cohort involving 78 patients (81 ankles) who underwent Salto Talaris fixed-bearing TAA to treat end-stage arthritis, with a mean postoperative follow-up of 5.

View Article and Find Full Text PDF

A 100-nm-thick gadolinium layer deposited on a pixelated silicon sensor was activated in a neutron field to measure the internal conversion electron (ICE) spectrum generated by neutron capture products of Gd and Gd. The experiment was performed at the ISIS neutron and muon facility, using a bespoke version of the HEXITEC spectroscopic imaging camera. Signals originating from internal conversion electrons, Auger electrons, x rays and gamma rays up to 150 keV were identified.

View Article and Find Full Text PDF

Tumor cells have evolved to express immunosuppressive molecules allowing their evasion from the host's immune system. These molecules include programmed death ligands 1 and 2 (PD-L1 and PD-L2). Cancer cells can also produce acetylcholine (ACh), which plays a role in tumor development.

View Article and Find Full Text PDF

We report on a novel, noninvasive method applying Thomson scattering to measure the evolution of the electron beam energy inside a laser-plasma accelerator with high spatial resolution. The determination of the local electron energy enabled the in-situ detection of the acting acceleration fields without altering the final beam state. In this Letter we demonstrate that the accelerating fields evolve from (265±119)  GV/m to (9±4)  GV/m in a plasma density ramp.

View Article and Find Full Text PDF

High-flux X-ray measurements with high-energy resolution and high throughput require the mitigation of pile-up and dead time effects. The reduction of the time width of the shaped pulses is a key approach, taking into account the distortions from the ballistic deficit, non-linearity, and time instabilities. In this work, we will present the performance of cadmium−zinc−telluride (CdZnTe or CZT) pixel detectors equipped with digital shapers faster than the preamplifier peaking times (ballistic deficit pulse processing).

View Article and Find Full Text PDF

The performance of Li ion batteries (LIBs) is hindered by steep Li ion concentration gradients in the electrodes. Although thick electrodes (≥300 µm) have the potential for reducing the proportion of inactive components inside LIBs and increasing battery energy density, the Li ion concentration gradient problem is exacerbated. Most understanding of Li ion diffusion in the electrodes is based on computational modeling because of the low atomic number (Z) of Li.

View Article and Find Full Text PDF

The success of cadmium zinc telluride (CZT) detectors in room-temperature spectroscopic X-ray imaging is now widely accepted. The most common CZT detectors are characterized by enhanced-charge transport properties of electrons, with mobility-lifetime products μeτe > 10 cm/V and μhτh > 10 cm/V. These materials, typically termed low-flux LF-CZT, are successfully used for thick electron-sensing detectors and in low-flux conditions.

View Article and Find Full Text PDF

Multiple coincidence events from charge-sharing and fluorescent cross-talk are typical drawbacks in room-temperature semiconductor pixel detectors. The mitigation of these distortions in the measured energy spectra, using charge-sharing discrimination (CSD) and charge-sharing addition (CSA) techniques, is always a trade-off between counting efficiency and energy resolution. The energy recovery of multiple coincidence events is still challenging due to the presence of charge losses after CSA.

View Article and Find Full Text PDF

Cadmium zinc telluride (CdZnTe) detectors are known to suffer from polarization effects under high photon flux due to poor hole transport in the crystal material. This has led to the development of a high-flux capable CdZnTe material (HF-CdZnTe). Detectors with the HF-CdZnTe material have shown promising results at mitigating the onset of the polarization phenomenon, likely linked to improved crystal quality and hole carrier transport.

View Article and Find Full Text PDF

Hybrid pixel detectors (HPDs) have been shown to be highly effective for diffraction-based and time-resolved studies in transmission electron microscopy, but their performance is limited by the fact that high-energy electrons scatter over long distances in their thick Si sensors. An advantage of HPDs compared to monolithic active pixel sensors is that their sensors do not need to be fabricated from Si. We have compared the performance of the Medipix3 HPD with a Si sensor and a GaAs:Cr sensor using primary electrons in the energy range of 60-300 keV.

View Article and Find Full Text PDF

An experimental technique is described for the collection of time-resolved X-ray diffraction information from a complete commercial battery cell during discharging or charging cycles. The technique uses an 80 × 80 pixel 2D energy-discriminating detector in a pinhole camera geometry which can be used with a polychromatic X-ray source. The concept was proved in a synchrotron X-ray study of commercial alkaline Zn-MnO AA size cells.

View Article and Find Full Text PDF

Background: The currently available treatments for colorectal cancer (CRC) are often associated with serious side-effects. Therefore, the development of a novel nutraceutical agent may provide an alternative complementary therapy for CRC. Overexpression of the epidermal growth factor receptor (EGFR) associates with a range of cancers while downregulation of EGFR signalling can inhibit cancer growth.

View Article and Find Full Text PDF

In this paper, we present the design and preliminary performance evaluation of a novel external multi-channel readout circuitry for small-pixel room-temperature semiconductor detectors, namely CdZnTe (CZT) and CdTe, that provide an excellent intrinsic spatial (250 and 500 μm pixel size) and an ultrahigh energy resolution (~1% at 122 keV) for X-ray and gamma-ray imaging applications. An analog front-end printed circuit board (PCB) was designed and developed for data digitization, data transfer and ASIC control of pixelated CZT or CdTe detectors. Each detector unit is 2 cm × 2 cm in size and 1 or 2 mm in thickness, being bump-bonded onto a HEXITEC ASIC, and wire-bonded to a readout detector module PCB.

View Article and Find Full Text PDF

Cadmium-zinc-telluride (CZT) pixel detectors represent a consolidated choice for the development of room-temperature spectroscopic X-ray imagers, finding important applications in medical imaging, often as detection modules of a variety of new SPECT and CT systems. Detectors with 3-5 mm thicknesses are able to efficiently detect X-rays up to 140 keV giving reasonable room-temperature energy resolution. In this work, the room-temperature performance of 3 mm-thick CZT pixel detectors, recently developed at IMEM/CNR of Parma (Italy), is presented.

View Article and Find Full Text PDF

Since the late 2000s, the availability of high-quality cadmium zinc telluride (CdZnTe) has greatly increased. The excellent spectroscopic performance of this material has enabled the development of detectors with volumes exceeding 1 cm for use in the detection of nuclear materials. CdZnTe is also of great interest to the photon science community for applications in X-ray imaging cameras at synchrotron light sources and free electron lasers.

View Article and Find Full Text PDF

In this work, the spectroscopic performances of new cadmium-zinc-telluride (CZT) pixel detectors recently developed at IMEM-CNR of Parma (Italy) are presented. Sub-millimetre arrays with pixel pitch less than 500 µm, based on boron oxide encapsulated vertical Bridgman grown CZT crystals, were fabricated. Excellent room-temperature performance characterizes the detectors even at high-bias-voltage operation (9000 V cm), with energy resolutions (FWHM) of 4% (0.

View Article and Find Full Text PDF

Many individuals are concerned about the governance of machine learning systems and the prevention of algorithmic harms. The EU's recent General Data Protection Regulation (GDPR) has been seen as a core tool for achieving better governance of this area. While the GDPR does apply to the use of models in some limited situations, most of its provisions relate to the governance of personal data, while models have traditionally been seen as intellectual property.

View Article and Find Full Text PDF

Charge losses at the inter-pixel gap are typical drawbacks in cadmium-zinc-telluride (CZT) pixel detectors. In this work, an original technique able to correct charge losses occurring after the application of charge-sharing addition (CSA) is presented. The method, exploiting the strong relation between the energy after CSA and the beam position at the inter-pixel gap, allows the recovery of charge losses and improvements in energy resolution.

View Article and Find Full Text PDF

Cadmium-zinc-telluride (CZT) arrays with photon-counting and energy-resolving capabilities are widely proposed for next-generation X-ray imaging systems. This work presents the performance of a 2 mm-thick CZT pixel detector, with pixel pitches of 500 and 250 µm, dc coupled to a fast and low-noise ASIC (PIXIE ASIC), characterized only by the preamplifier stage. A custom 16-channel digital readout electronics was used, able to digitize and process continuously the signals from each output ASIC channel.

View Article and Find Full Text PDF

High-energy X-rays (HEX-rays) with photon energies on order of 100 keV have attractive characteristics, such as comparably low absorption, high spatial resolution and the ability to access inner-shell states of heavy atoms. These properties are advantageous for many applications ranging from studies of bulk materials to the investigation of materials in extreme conditions. Ultrafast X-ray diffraction allows the direct imaging of atomic dynamics simultaneously on its natural time and length scale.

View Article and Find Full Text PDF

Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used.

View Article and Find Full Text PDF

In mammography, the reduction of scattered x-rays is vital due to the low contrast or small dimension of the details that are searched for. The typical method of doing so in current conventional mammography is the anti-scatter grid. The disadvantage of this method is the absorption of a proportion of the primary beam and therefore an increase in dose is required to compensate for the loss of counts.

View Article and Find Full Text PDF

Background: Early childhood caries affects nearly half the population of Australian children aged 5 years and has the potential to negatively impact their growth and development. To address this issue, an Early Childhood Oral Health (ECOH) program, facilitated by Child and Family Health Nurses (CFHNs), commenced in 2007 in New South Wales, Australia. This study builds on the previous evaluation of the program.

View Article and Find Full Text PDF

The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts.

View Article and Find Full Text PDF