Publications by authors named "Vdovin G"

We have applied a combination of blind deconvolution and deep learning to the processing of Shack-Hartmann images. By using the intensity information contained in spot positions, and the fine structure of the separate images created by the lenslets, we have increased the sensitivity and resolution of the sensor over the limit defined by standard processing of spot displacements only. We also have demonstrated the applicability of the method to wavefront sensing using extended objects as a reference.

View Article and Find Full Text PDF

Protonic ceramic fuel cells (PCFCs) offer a convenient means of converting chemical energy into electricity with high performance and efficiency at low- and intermediate-temperature ranges. However, in order to ensure good life-time stability of PCFCs, it is necessary to ensure rational chemical design in functional materials. Within the present work, we propose new Ni-based perovskite phases of PrNiMO (where M = Co, Fe) for potential utilization in protonic ceramic electrochemical cells.

View Article and Find Full Text PDF

Significance: Particle field holography is a versatile technique to determine the size and distribution of moving or stationary particles in air or in a liquid without significant disturbance of the sample volume. Although this technique is applied in biological sample analysis, it is limited to small sample volumes, thus increasing the number of measurements per sample. In this work, we characterize the maximum achievable volume limit based on the specification of a given sensor to realize the development of a potentially low-cost, single-shot, large-volume holographic microscope.

View Article and Find Full Text PDF

Inhomogeneities in the refractive index of a biological microscopy sample can introduce phase aberrations, severely impairing the quality of images. Adaptive optics can be employed to correct for phase aberrations and improve image quality. However, conventional adaptive optics can only correct a single phase aberration for the whole field of view (isoplanatic correction) while, due to the highly heterogeneous nature of biological tissues, the sample induced aberrations in microscopy often vary throughout the field of view (anisoplanatic aberration), limiting significantly the effectiveness of adaptive optics.

View Article and Find Full Text PDF

In this Letter, we report on an algorithm and its implementation to reconstruct the wavefront as a continuous function from a bitmap image of the Hartmann-Shack pattern. The approach works with arbitrary raster geometry and does not require explicit spot definition and phase unwrapping. The system matrix, defining the coefficients of wavefront decomposition in the system of basis functions, is obtained as a result of a series of convolutions and thresholding operations on the reference and sample images.

View Article and Find Full Text PDF

The use of spatial light modulators to project computer generated holograms is a common strategy for optogenetic stimulation of multiple structures of interest within a three-dimensional volume. A common requirement when addressing multiple targets sparsely distributed in three dimensions is the generation of a points cloud, focusing excitation light in multiple diffraction-limited locations throughout the sample. Calculation of this type of holograms is most commonly performed with either the high-speed, low-performance random superposition algorithm, or the low-speed, high performance Gerchberg-Saxton algorithm.

View Article and Find Full Text PDF

Reversible protonic ceramic cells (rPCCs) combine two different operation regimes, fuel cell and electrolysis cell modes, which allow reversible chemical-to-electrical energy conversion at reduced temperatures with high efficiency and performance. Here we present novel technological and materials science approaches, enabling a rPCC with symmetrical functional electrodes to be prepared using a single sintering step. The response of the cell fabricated on the basis of P⁻N⁻BCZD|BCZD|PBN⁻BCZD (where BCZD = BaCeZrDyO, PBN = PrBaNiO, P = Pr₂O₃, N = Ni) is studied at different temperatures and water vapor partial pressures (pH₂O) by means of volt-ampere measurements, electrochemical impedance spectroscopy and distribution of relaxation times analyses.

View Article and Find Full Text PDF

With a view to the next generation of large space telescopes, we investigate guide-star-free, image-based aberration correction using a unimorph deformable mirror in a plane conjugate to the primary mirror. We designed and built a high-resolution imaging testbed to evaluate control algorithms. In this paper we use an algorithm based on the heuristic hill climbing technique and compare the correction in three different domains, namely the voltage domain, the domain of the Zernike modes, and the domain of the singular modes of the deformable mirror.

View Article and Find Full Text PDF

We have optimized the design and imaging procedures, to clearly resolve the malaria parasite in Giemsa-stained thin blood smears, using simple low-cost cellphone-based microscopy with oil immersion. The microscope uses a glass ball as the objective and the phone camera as the tube lens. Our optimization includes the optimal choice of the ball lens diameter, the size and the position of the aperture diaphragm, and proper application of immersion, to achieve diagnostic capacity in a wide field of view.

View Article and Find Full Text PDF

Three-dimensional microscopy suffers from sample-induced aberrations that reduce the resolution and lead to misinterpretations of the object distribution. In this paper, the resolution of a three-dimensional fluorescent microscope is significantly improved by introducing an amplitude diversity in the form of a binary amplitude mask positioned in several different orientations within the pupil, followed by computer processing of the diversity images. The method has proved to be fast, easy to implement, and cost-effective in high-resolution imaging of casper fli:GFP zebrafish.

View Article and Find Full Text PDF

The Fe-based perovskite-structured Nd0.5Ba0.5FeO3-δ (NBF) system represents the basis for developing promising electrode materials for solid oxide fuel cells with proton-conducting electrolytes.

View Article and Find Full Text PDF

We report on a universal sample-independent sensorless adaptive optics method, based on modal optimization of the second moment of the fluorescence emission from a point-like excitation. Our method employs a sample-independent precalibration, performed only once for the particular system, to establish the direct relation between the image quality and the aberration. The method is potentially applicable to any form of microscopy with epifluorescence detection, including the practically important case of incoherent fluorescence emission from a three dimensional object, through minor hardware modifications.

View Article and Find Full Text PDF

The design and development of highly conductive materials with wide electrolytic domain boundaries are among the most promising means of enabling solid oxide fuel cells (SOFCs) to demonstrate outstanding performance across low- and intermediate-temperature ranges. While reducing the thickness of the electrolyte is an extensively studied means for diminishing the total resistance of SOFCs, approaches involving an improvement in the transport behavior of the electrolyte membranes have been less-investigated. In the present work, a strategy for analyzing the electrolyte properties and their effect on SOFC output characteristics is proposed.

View Article and Find Full Text PDF

We have shown that the maximum achievable resolution of an in-line lensless holographic microscope is limited by aliasing and, for collimated illumination, cannot exceed the camera pixel size. This limit can be achieved only when the optimal conditions on the spatial and temporal coherence state of the illumination are satisfied. The expressions defining the configuration, delivering maximum resolution with given spatial and temporal coherence of the illumination, are obtained.

View Article and Find Full Text PDF

In this Letter, we show that a Shack-Hartmann wavefront sensor can be used for the quantitative measurement of the specimen optical path difference (OPD) in an ordinary incoherent optical microscope, if the spatial coherence of the illumination light in the plane of the specimen is larger than the microscope resolution. To satisfy this condition, the illumination numerical aperture should be smaller than the numerical aperture of the imaging lens. This principle has been successfully applied to build a high-resolution reference-free instrument for the characterization of the OPD of micro-optical components and microscopic biological samples.

View Article and Find Full Text PDF

The quality of fluorescence microscopy images is often impaired by the presence of sample induced optical aberrations. Adaptive optical elements such as deformable mirrors or spatial light modulators can be used to correct aberrations. However, previously reported techniques either require special sample preparation, or time consuming optimization procedures for the correction of static aberrations.

View Article and Find Full Text PDF

A methodology for the adaptive control and correction of phase aberrations in the illumination arm of a light-sheet fluorescence microscope has been developed. The method uses direct wavefront sensing on epi-fluorescent light to detect the aberration present in the sample. Using this signal, the aberrations in the illumination arm are subsequently corrected with a spatial light modulator in a feedforward mode.

View Article and Find Full Text PDF

A high-resolution Shack-Hartmann wavefront sensor has been used for coherent holographic imaging, by computer reconstruction and propagation of the complex field in a lensless imaging setup. The resolution of the images obtained with the experimental data is in a good agreement with the diffraction theory. Although a proper calibration with a reference beam improves the image quality, the method has a potential for reference-less holographic imaging with spatially coherent monochromatic and narrowband polychromatic sources in microscopy and imaging through turbulence.

View Article and Find Full Text PDF

Pupil filters, represented by binary phase modulation, have been applied to extend the field of view of a light-sheet fluorescence microscope. Optimization has been used, first numerically to calculate the optimum filter structure and then experimentally, to scale and align the numerically synthesized filter in the microscope. A significant practical extension of the field of view has been observed, making the reported approach a valuable tool on the path to wide-field light-sheet microscopy.

View Article and Find Full Text PDF

A possible solution for the global warming problem consists of scattering the solar radiation by a cloud of screens, placed near the inner Lagrange point (L1), between the sun and the earth. The thin film material for such a screen should have a high longevity in space environment, low areal density, high on-axis scattering, very low integral reflectivity over the whole solar spectrum, and good handling properties such as foldability and robustness. We report on experimental fabrication of free-standing robust nitride films satisfying to most optical and mechanical requirements for such a screen.

View Article and Find Full Text PDF

We consider a wavefront sensor combining scattering pupil with a plenoptic imager. Such a sensor utilizes the same reconstruction principle as the Hartmann-Shack sensor, however it is free from the ambiguity of the spot location caused by the periodic structure of the sensor matrix, and allows for wider range of measured aberrations. In our study, sensor with scattering pupil has demonstrated a good match between the introduced and reconstructed aberrations, both in the simulation and experiment.

View Article and Find Full Text PDF

A deformable mirror based on the principle of total internal reflection of light from an electrostatically deformed liquid-air interface was realized and used to perform closed-loop adaptive optical (AO) correction on a collimated laser beam aberrated by a rotating phase disk. Equations describing the resonant and oscillatory behavior of the liquid system were obtained and applied to the system under consideration. Characterization of the mirror included open- and closed-loop frequency responses, determination of rise times, the damping times of the liquid, and the influence of liquid surface motion in the absence of external optical aberrations.

View Article and Find Full Text PDF

We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures.

View Article and Find Full Text PDF

In many scientific and medical applications, such as laser systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics (AO) systems are used to improve the laser beam quality or the image resolution by correcting the wavefront aberration in the optical path. The lack of direct wavefront measurement in WFSless AO systems imposes a challenge to achieve efficient aberration correction. This paper presents an aberration correction approach for WFSlss AO systems based on the model of the WFSless AO system and a small number of intensity measurements, where the model is identified from the input-output data of the WFSless AO system by black-box identification.

View Article and Find Full Text PDF

A deformable mirror based on internal reflection from an electrostatically deformable liquid-air interface is proposed and investigated. A differential equation describing the static behavior of such a mirror is analyzed and solved numerically. Stable closed-loop operation of an adaptive optical system with a liquid deformable mirror is demonstrated, including forming and the correction of low-order aberrations described by Zernike polynomials and the real-time correction of dynamically changing aberrations.

View Article and Find Full Text PDF