Publications by authors named "Vazquez-Torres A"

Phage viruses shape the evolution and virulence of their bacterial hosts. The genome encodes several stress-inducible prophages. The Gifsy-1 prophage terminase protein, whose canonical function is to process phage DNA for packaging in the virus head, unexpectedly acts as a transfer ribonuclease (tRNase) under oxidative stress, cleaving the anticodon loop of tRNA.

View Article and Find Full Text PDF

Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice.

View Article and Find Full Text PDF

Salmonella suffer the cytotoxicity of reactive oxygen species generated by the phagocyte NADPH oxidase in the innate host response. Periplasmic superoxide dismutases, catalases and hydroperoxidases detoxify superoxide and hydrogen peroxide (H2O2) synthesized in the respiratory burst of phagocytic cells. Glutathione also helps Salmonella combat the phagocyte NADPH oxidase; however, the molecular mechanisms by which this low-molecular-weight thiol promotes resistance of Salmonella to oxidative stress are currently unknown.

View Article and Find Full Text PDF

Salmonella invades host cells and replicates inside acidified, remodeled vacuoles that are exposed to reactive oxygen species (ROS) generated by the innate immune response. Oxidative products of the phagocyte NADPH oxidase mediate antimicrobial activity, in part, by collapsing the ΔpH of intracellular Salmonella. Given the role of arginine in bacterial resistance to acidic pH, we screened a library of 54 single-gene mutants in Salmonella that are each involved in, but do not entirely block, arginine metabolism.

View Article and Find Full Text PDF

Detoxification, scavenging, and repair systems embody the archetypical antioxidant defenses of prokaryotic and eukaryotic cells. Metabolic rewiring also aids with the adaptation of bacteria to oxidative stress. Evolutionarily diverse bacteria combat the toxicity of reactive oxygen species (ROS) by actively engaging the stringent response, a stress program that controls many metabolic pathways at the level of transcription initiation via guanosine tetraphosphate and the α-helical DksA protein.

View Article and Find Full Text PDF

The exquisite specificity between a sensor kinase and its cognate response regulator ensures faithful partner selectivity within two-component pairs concurrently firing in a single bacterium, minimizing crosstalk with other members of this conserved family of paralogous proteins. We show that conserved hydrophobic and charged residues on the surface of thioredoxin serve as a docking station for structurally diverse response regulators. Using the OmpR protein, we identify residues in the flexible linker and the C-terminal β-hairpin that enable associations of this archetypical response regulator with thioredoxin, but are dispensable for interactions of this transcription factor to its cognate sensor kinase EnvZ, DNA or RNA polymerase.

View Article and Find Full Text PDF

The metal ion manganese (Mn) is equally coveted by hosts and bacterial pathogens. The host restricts Mn in the gastrointestinal tract and containing vacuoles, as part of a process generally known as nutritional immunity. serovar Typhimurium counteract Mn limitation using a plethora of metal importers, whose expression is under elaborate transcriptional and posttranscriptional control.

View Article and Find Full Text PDF

The type III secretion system encoded in the Salmonella pathogenicity island-2 (SPI-2) gene cluster facilitates intracellular growth of nontyphoidal Salmonella by interfering with the maturation of Salmonella-containing vacuoles along the degradative pathway. SPI-2 gene products also protect Salmonella against the antimicrobial activity of reactive oxygen species (ROS) synthesized by the phagocyte NADPH oxidase 2 (NOX2). However, a potential relationship between inflammatory ROS and the activation of transcription of SPI-2 genes by intracellular Salmonella is unclear.

View Article and Find Full Text PDF

Metabolic and growth arrest are primary drivers of antibiotic tolerance and persistence in clinically diverse bacterial pathogens. We recently showed that adenosine (ADO) suppresses bacterial growth under nutrient-limiting conditions. In the current study, we show that despite the growth-suppressive effect of ADO, extracellular ADO enhances antibiotic killing in both Gram-negative and Gram-positive bacteria by up to 5 orders of magnitude.

View Article and Find Full Text PDF

Our previous biochemical approaches showed that the oxidoreductase activity of the DnaJ protein facilitates the interaction of oxidized DksA with RNA polymerase. Investigations herein demonstrate that under biologically relevant conditions the DnaJ- and DksA-codependent activation of the stringent response in undergoing oxidative stress involves the DnaK chaperone. Oxidation of DksA cysteine residues stimulates redox-based and holdase interactions with zinc-binding and C-terminal domains of DnaJ.

View Article and Find Full Text PDF

The microbial adaptations to the respiratory burst remain poorly understood, and establishing how the NADPH oxidase (NOX2) kills microbes has proven elusive. Here we demonstrate that NOX2 collapses the ΔpH of intracellular Salmonella Typhimurium. The depolarization experienced by Salmonella undergoing oxidative stress impairs folding of periplasmic proteins.

View Article and Find Full Text PDF

In response to nutrient depletion, the RelA and SpoT proteins generate the signaling molecule (p)ppGpp, which then controls a number of downstream effectors to modulate cell physiology. In strain AB5075, a ortholog () was identified by a transposon insertion that conferred an unusual colony phenotype. An in-frame deletion in (Δ) failed to produce detectable levels of ppGpp when amino acid starvation was induced with serine hydroxamate.

View Article and Find Full Text PDF

Cytostasis is the most salient manifestation of the potent antimicrobial activity of nitric oxide (NO), yet the mechanism by which NO disrupts bacterial cell division is unknown. Here, we show that in respiring , and , NO arrests the first step in division, namely, the GTP-dependent assembly of the bacterial tubulin homolog FtsZ into a cytokinetic ring. FtsZ assembly fails in respiring cells because NO inactivates inosine 5'-monophosphate dehydrogenase in de novo purine nucleotide biosynthesis and quinol oxidases in the electron transport chain, leading to drastic depletion of nucleoside triphosphates, including the GTP needed for the polymerization of FtsZ.

View Article and Find Full Text PDF

Guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), together named (p)ppGpp, regulate diverse aspects of pathogenesis, including synthesis of nutrients, resistance to inflammatory mediators, and expression of secretion systems. In , these nucleotide alarmones are generated by the synthetase activities of RelA and SpoT proteins. In addition, the (p)ppGpp hydrolase activity of the bifunctional SpoT protein is essential to preserve cell viability.

View Article and Find Full Text PDF

Reactive nitrogen species play diverse and essential roles in host-pathogen interactions. Here, we review selected recent discoveries regarding nitric oxide (NO) in host defense and the pathogenesis of infection, mechanisms of bacterial NO resistance, production of NO by human macrophages, NO-based antimicrobial therapeutics and NO interactions with the gut microbiota.

View Article and Find Full Text PDF

RNA polymerase is the only known protein partner of the transcriptional regulator DksA. Herein, we demonstrate that the chaperone DnaJ establishes direct, redox-based interactions with oxidized DksA. Cysteine residues in the zinc finger of DksA become oxidized in exposed to low concentrations of hydrogen peroxide (HO).

View Article and Find Full Text PDF

Leishmania species are sand fly-transmitted protozoan parasites that cause leishmaniasis, neglected tropical diseases that affect millions of people. Leishmania amastigotes must overcome a variety of host defenses, including reactive oxygen species (ROS) produced by the NADPH oxidase. Leishmania species encode three superoxide dismutases (SODs): the mitochondrial SODA and two glycosomal SODs (SODB1 and SODB2).

View Article and Find Full Text PDF

The metabolic processes that enable the replication of intracellular Salmonella under nitrosative stress conditions engendered in the innate response of macrophages are poorly understood. A screen of Salmonella transposon mutants identified the ABC-type high-affinity zinc uptake system ZnuABC as a critical determinant of the adaptation of Salmonella to the nitrosative stress generated by the enzymatic activity of inducible nitric oxide (NO) synthase of mononuclear phagocytic cells. NO limits the virulence of a znuB mutant in an acute murine model of salmonellosis.

View Article and Find Full Text PDF

The repressive activity of ancestral histone-like proteins helps integrate transcription of foreign genes with discrepant AT content into existing regulatory networks. Our investigations indicate that the AT-rich discriminator region located between the -10 promoter element and the transcription start site of the regulatory gene ssrA plays a distinct role in the balanced expression of the Salmonella pathogenicity island-2 (SPI2) type III secretion system. The RNA polymerase-binding protein DksA activates the ssrAB regulon post-transcriptionally, whereas the alarmone guanosine tetraphosphate (ppGpp) relieves the negative regulation imposed by the AT-rich ssrA discriminator region.

View Article and Find Full Text PDF

The genus is responsible for many illnesses in humans and other vertebrate animals. We report here that serovar Typhimurium harbors three transketolases that support the non-oxidative branch of the pentose phosphate pathway. BLAST analysis identified two genes, _ and _, that together encode a putative transketolase (TktC) with 46-47% similarity to the known TktA and TktB isoforms.

View Article and Find Full Text PDF

The adaptations that protect pathogenic microorganisms against the cytotoxicity of nitric oxide (NO) engendered in the immune response are incompletely understood. We show here that salmonellae experiencing nitrosative stress suffer dramatic losses of the nucleoside triphosphates ATP, GTP, CTP, and UTP while simultaneously generating a massive burst of the alarmone nucleotide guanosine tetraphosphate. RelA proteins associated with ribosomes overwhelmingly synthesize guanosine tetraphosphate in response to NO as a feedback mechanism to transient branched-chain amino acid auxotrophies.

View Article and Find Full Text PDF

Related works in this issue of Cell Host & Microbe (Bronner et al., 2018) and in a recent issue of Cell Reports (Hiyoshi et al., 2018) demonstrate how loss-of-function mutations in butyrate utilization and lipopolysaccharide O-antigen processing contribute to evasion of innate host defenses and the convergent evolution of distinct typhoidal Salmonella lineages.

View Article and Find Full Text PDF
Article Synopsis
  • The PhoPQ regulatory system in Salmonella enterica helps the bacteria survive various environmental stressors during infection, including changes in magnesium levels and immune responses.
  • Mutations in the phoPQ gene make the bacteria more vulnerable to reactive nitrogen species (RNS) from macrophages, highlighting the gene's role in resistance mechanisms.
  • The study suggests that PhoPQ's regulation of magnesium transport via MgtA is key to protecting Salmonella from nitrooxidative damage, emphasizing the importance of magnesium homeostasis in bacterial survival.
View Article and Find Full Text PDF

Ecto-5'-nucleotidase (CD73) is expressed abundantly on the apical surface of intestinal epithelial cells (IECs) and functions as the terminal enzyme in the generation of extracellular adenosine. Previous work demonstrated that adenosine signaling in IECs results in a number of tissue-protective effects during inflammation; however, a rationale for its apical expression has been lacking. We hypothesized that the highly polarized expression of CD73 is indicative of an important role for extracellular adenosine as a mediator of host-microbe interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Salmonella enterica can thrive in different oxygen and nitric oxide levels by utilizing specifics of its quinol oxidases, particularly cytochrome bd, to enhance its virulence.
  • Cytochrome bd shows a higher affinity for oxygen, allowing Salmonella to grow efficiently in low-oxygen environments and provides crucial defenses against nitric oxide, which can be harmful to bacteria.
  • The synergistic action of cytochrome bd and flavohemoglobin Hmp equips Salmonella to withstand nitrosative stress during infection and facilitates its growth in diverse anatomical sites of the host.
View Article and Find Full Text PDF