Publications by authors named "Vazquez-Leal H"

The aim of this article is to show a way to extend the usefulness of the Generalized Bernoulli Method (GBM) with the purpose to apply it for the case of variational problems with functionals that depend explicitly of all the variables. Moreover, after expressing the Euler equations in terms of this extension of GBM, we will see that the resulting equations acquire a symmetric form, which is not shared by the known Euler equations. We will see that this symmetry is useful because it allows us to recall these equations with ease.

View Article and Find Full Text PDF

Nonlinear piezoelectric materials are raised as a great replacement for devices that require low power consumption, high sensitivity, and accurate transduction, fitting with the demanding requirements of new technologies such as the Fifth-Generation of telecommunications (5G), the Internet of Things (IoT), and modern radio frequency (RF) applications. In this work, the state equations that correctly predict the nonlinear piezoelectric phenomena observed experimentally are presented. Furthermore, we developed a fast methodology to implement the state equations in the main FEM simulation software, allowing an easy design and characterization of this type of device, as the symmetry structures for high-order tensors are shown and explained.

View Article and Find Full Text PDF

Natural sources of green energy include sunshine, water, biomass, geothermal heat, and wind. These energies are alternate forms of electrical energy that do not rely on fossil fuels. Green energy is environmentally benign, as it avoids the generation of greenhouse gases and pollutants.

View Article and Find Full Text PDF

Achieving the smart motion of any autonomous or semi-autonomous robot requires an efficient algorithm to determine a feasible collision-free path. In this paper, a novel collision-free path homotopy-based path-planning algorithm applied to planar robotic arms is presented. The algorithm utilizes homotopy continuation methods (HCMs) to solve the non-linear algebraic equations system (NAES) that models the robot's workspace.

View Article and Find Full Text PDF

Hydrogenated microcrystalline silicon (µc-Si:H) and epitaxial silicon (epi-Si) films have been produced from SiF, H and Ar mixtures by plasma enhanced chemical vapor deposition (PECVD) at 200 °C. Here, both films were produced using identical deposition conditions, to determine if the conditions for producing µc-Si with the largest crystalline fraction (X), will also result in epi-Si films that encompass the best quality and largest crystalline silicon (c-Si) fraction. Both characteristics are of importance for the development of thin film transistors (TFTs), thin film solar cells and novel 3D devices since epi-Si films can be grown or etched in a selective manner.

View Article and Find Full Text PDF

The applicability of the path planning strategy to robotic manipulators has been an exciting topic for researchers in the last few decades due to the large demand in the industrial sector and its enormous potential development for space, surgical, and pharmaceutical applications. The automation of high-degree-of-freedom (DOF) manipulator robots is a challenging task due to the high redundancy in the end-effector position. Additionally, in the presence of obstacles in the workspace, the task becomes even more complicated.

View Article and Find Full Text PDF

In this paper, we explore the advantages of a fractional calculus based watermarking system for detecting Gaussian watermarks. To reach this goal, we selected a typical watermarking scheme and replaced the detection equation set by another set of equations derived from fractional calculus principles; then, we carried out a statistical assessment of the performance of both schemes by analyzing the Receiver Operating Characteristic (ROC) curve and the False Positive Percentage (FPP) when they are used to detect Gaussian watermarks. The results show that the ROC of a fractional equation based scheme has 48.

View Article and Find Full Text PDF

During the phenomena modelling process in the different areas of science and engineering is common to face nonlinear equations without exact solutions; thus, the need of employing numerical methods to obtain such solutions. Therefore, in order to provide new possibilities for the isolation of variables, we propose a novel family of transcendental functions with new algebraic properties including their integration and differentiation rules. Likewise, in order facilitate the numerical evaluation for every new family set of functions, a highly accurate series of approximations is proposed by employing analytical expressions in terms of known transcendental functions and polynomials combinations.

View Article and Find Full Text PDF

The authors wish to make the following corrections to this paper [1]: replace: (37) 1 ε z = f ε m = 1 - f ε d and (39) 1 μ z = f μ m = 1 - f μ d with the correct expressions: (37) 1 ε z = f ε m + 1 - f ε d and (39) 1 μ z = f μ m + 1 - f μ d [...

View Article and Find Full Text PDF

The ability to plan a multiple-target path that goes through places considered important is desirable for autonomous mobile robots that perform tasks in industrial environments. This characteristic is necessary for inspection robots that monitor the critical conditions of sectors in thermal, nuclear, and hydropower plants. This ability is also useful for applications such as service at home, victim rescue, museum guidance, land mine detection, and so forth.

View Article and Find Full Text PDF

This work presents the novel Leal-polynomials (LP) for the approximation of nonlinear differential equations of different kind. The main characteristic of LPs is that they satisfy multiple expansion points and its derivatives as a mechanism to replicate behaviour of the nonlinear problem, giving more accuracy within the region of interest. Therefore, the main contribution of this work is that LP satisfies the successive derivatives in some specific points, resulting more accurate polynomials than Taylor expansion does for the same degree of their respective polynomials.

View Article and Find Full Text PDF

The aim of this article is to show the way to get both, exact and analytical approximate solutions for certain variational problems with moving boundaries but without resorting to Euler formalism at all, for which we propose two methods: the Moving Boundary Conditions Without Employing Transversality Conditions (MWTC) and the Moving Boundary Condition Employing Transversality Conditions (METC). It is worthwhile to mention that the first of them avoids the concept of transversality condition, which is basic for this kind of problems, from the point of view of the known Euler formalism. While it is true that the second method will utilize the above mentioned conditions, it will do through a systematic elementary procedure, easy to apply and recall; in addition, it will be seen that the Generalized Bernoulli Method (GBM) will turn out to be a fundamental tool in order to achieve these objectives.

View Article and Find Full Text PDF

This work presents an analytical solution of some nonlinear delay differential equations (DDEs) with variable delays. Such DDEs are difficult to treat numerically and cannot be solved by existing general purpose codes. A new method of steps combined with the differential transform method (DTM) is proposed as a powerful tool to solve these DDEs.

View Article and Find Full Text PDF

A smoothed representation (based on natural exponential and logarithmic functions) for the canonical piecewise-linear model, is presented. The result is a completely differentiable formulation that exhibits interesting properties, like preserving the parameters of the original piecewise-linear model in such a way that they can be directly inherited to the smooth model in order to determine their parameters, the capability of controlling not only the smoothness grade, but also the approximation accuracy at specific breakpoint locations, a lower or equal overshooting for high order derivatives in comparison with other approaches, and the additional advantage of being expressed in a reduced mathematical form with only two types of inverse functions (logarithmic and exponential). By numerical simulation examples, this proposal is verified and well-illustrated.

View Article and Find Full Text PDF

Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance.

View Article and Find Full Text PDF

In the present work, we introduce an improved version of the hyperspheres path tracking method adapted for piecewise linear (PWL) circuits. This enhanced version takes advantage of the PWL characteristics from the homotopic curve, achieving faster path tracking and improving the performance of the homotopy continuation method (HCM). Faster computing time allows the study of complex circuits with higher complexity; the proposed method also decrease, significantly, the probability of having a diverging problem when using the Newton-Raphson method because it is applied just twice per linear region on the homotopic path.

View Article and Find Full Text PDF

This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.

View Article and Find Full Text PDF

In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods.

View Article and Find Full Text PDF

This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method.

View Article and Find Full Text PDF

Unlabelled: This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem.

View Article and Find Full Text PDF

We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points.

View Article and Find Full Text PDF

This article proposes Laplace Transform Homotopy Perturbation Method (LT-HPM) to find an approximate solution for the problem of an axisymmetric Newtonian fluid squeezed between two large parallel plates. After comparing figures between approximate and exact solutions, we will see that the proposed solutions besides of handy, are highly accurate and therefore LT-HPM is extremely efficient.

View Article and Find Full Text PDF

Abstract: In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity.

View Article and Find Full Text PDF

In this article, Perturbation Method (PM) is employed to obtain a handy approximate solution to the steady state nonlinear reaction diffusion equation containing a nonlinear term related to Michaelis-Menten of the enzymatic reaction. Comparing graphics between the approximate and exact solutions, it will be shown that the PM method is quite efficient.

View Article and Find Full Text PDF

This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions.

View Article and Find Full Text PDF