Publications by authors named "Vazquez-Campos S"

Background: Silver (Ag) nanoparticles (NPs) are used increasingly in consumer and healthcare fabrics due to their antimicrobial properties. Abrasive leaching experiments have shown that AgNPs can be released during textile wear and cause a dermal exposure. Derived-no-effect-limit value for AgNPs ranges from 0.

View Article and Find Full Text PDF

This report, the second of its kind from ASINA project, aims at providing a roadmap with quantitative metrics for Safe(r) and (more) Sustainable by Design (SSbD) solutions for titanium dioxide (TiO) nanomaterials (NMs). We begin with a brief description of ASINA's methodology across the product lifecycle, highlighting the quantitative elements, such as the Key Performance Indicators (KPIs). We then propose a decision support tool for implementing SSbD objectives across various dimensions-functionality, cost, environment, and human health safety.

View Article and Find Full Text PDF

This report demonstrates a case study within the ASINA project, aimed at instantiating a roadmap with quantitative metrics for Safe(r) and (more) Sustainable by Design (SSbD) options. We begin with a description of ASINA's methodology across the product lifecycle, outlining the quantitative elements within: Physical-Chemical Features (PCFs), Key Decision Factors (KDFs), and Key Performance Indicators (KPIs). Subsequently, we delve in a proposed decision support tool for implementing the SSbD objectives across various dimensions-functionality, cost, environment, and human health safety-within a broader European context.

View Article and Find Full Text PDF

Background: The application of nanomaterials (NMs) and nano-enabled products (NEPs) across many industries has been extensive and is still expanding decades after first being identified as an emerging technology. Additive manufacturing has been greatly impacted and has seen the benefits of integrating NMs within products. With the expansion of nanotechnology, there has been a need to develop more adaptive and responsive methods to ascertain risks and ensure technology is developed safely.

View Article and Find Full Text PDF

In 2020, the European Commission published a regulation that states all producers of white paints containing titanium dioxide (TiO) must provide a warning label on their products. Exposure during the production and application of products containing TiO can be harmful, and therefore these products must be labeled as "may cause cancer." The paint industry is a major user of TiO pigment.

View Article and Find Full Text PDF

The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs).

View Article and Find Full Text PDF

Challenges in distinguishing between natural and engineered nanomaterials (ENMs) and the lack of historical records on ENM accidents have hampered attempts to estimate the accidental release and associated environmental impacts of ENMs. Building on knowledge from the nuclear power industry, we provide an assessment of the likelihood of accidental release rates of ENMs within the next 10 and 30 years. We evaluate risk predictive methodology and compare the results with empirical evidence, which enables us to propose modelling approaches to estimate accidental release risk probabilities.

View Article and Find Full Text PDF

There is an urgent need to apply effective, data-driven approaches to reliably predict engineered nanomaterial (ENM) toxicity. Here we introduce a predictive computational framework based on the molecular and phenotypic effects of a large panel of ENMs across multiple in vitro and in vivo models. Our methodology allows for the grouping of ENMs based on multi-omics approaches combined with robust toxicity tests.

View Article and Find Full Text PDF

In the nanosafety projects funded by the European Commission a large amount of data has been generated on hazard and exposure for a variety of engineered nanomaterials (ENMs) and nano-enabled products (NEPs). However, not all the data generated has been published, nor has all the data been stored in an organised manner (e. g.

View Article and Find Full Text PDF

The fluorescent properties of cadmium telluride (CdTe) containing quantum dots (QDs) have led to novel products and applications in the ink and pigment industry. The toxic effects of the emissions associated to the use of printing ink containing CdTe QDs might differ from those of conventional formulations which do not integrate nanoparticles, as CdTe QDs might be emitted. Within this work, the airborne emissions of a water-soluble fluorescent ink containing polyethylene glycol (PEG)-coated CdTe QDs of 3-5 nm diameter have been characterized and studied under controlled conditions during household inkjet printing in a scenario simulating the use phase.

View Article and Find Full Text PDF

Pulmonary exposure to micro- and nanoscaled particles has been widely linked to adverse health effects and high concentrations of respirable particles are expected to occur within and around many industrial settings. In this study, a field-measurement campaign was performed at an industrial manufacturer, during the production of paints. Spatial and personal measurements were conducted and results were used to estimate the mass flows in the facility and the airborne particle release to the outdoor environment.

View Article and Find Full Text PDF

In this study, two sets of methyl-coated non-porous and mesoporous amorphous silica materials of two target sizes (100 and 300 nm; 10-844 m/g) were used to investigate the potential role of specific surface area (SSA) and porosity on the oral toxicity in mice. Female Swiss mice were administered by oral gavage for 5 consecutive days. Two silica dose levels (100 and 1000 mg/kg b.

View Article and Find Full Text PDF

Nanotechnology is identified as a key enabling technology due to its potential to contribute to economic growth and societal well-being across industrial sectors. Sustainable nanotechnology requires a scientifically based and proportionate risk governance structure to support innovation, including a robust framework for environmental risk assessment (ERA) that ideally builds on methods established for conventional chemicals to ensure alignment and avoid duplication. Exposure assessment developed as a tiered approach is equally beneficial to nano-specific ERA as for other classes of chemicals.

View Article and Find Full Text PDF

Some nanoparticles (NPs) have been shown to disrupt intestinal microvilli morphology in vitro, an alteration that could potentially affect nutrient absorption and barrier properties. This study aimed at evaluating the potential effect of CeO NPs (4-8 nm, citrate stabilized) on Caco-2 microvilli morphology. In addition to the standard Caco-2 cell clone, the C2BBe1 clone was used, as it is considered to develop a more homogeneous cellular morphology.

View Article and Find Full Text PDF

Engineered nanomaterials (ENMs) have tremendous potential to produce beneficial technological impact in numerous sectors in society. Safety assessment is, of course, of paramount importance. However, the myriad variations of ENM properties makes the identification of specific features driving toxicity challenging.

View Article and Find Full Text PDF

Within the EU FP-7 GUIDEnano project, a methodology was developed to systematically quantify the similarity between a nanomaterial (NM) that has been tested in toxicity studies and the NM for which risk needs to be evaluated, for the purpose of extrapolating toxicity data between the two materials. The methodology is a first attempt to use current knowledge on NM property-hazard relationships to develop a series of pragmatic and systematic rules for assessing NM similarity. Moreover, the methodology takes into account the practical feasibility, in that it is based on generally available NM characterization information.

View Article and Find Full Text PDF

Synthesized iron oxide nanoparticles have been proposed as an alternative to non-dispersed iron oxides for in situ environmental remediation. Their colloidal properties enable their injection into porous media, i.e.

View Article and Find Full Text PDF

A major use of multi-walled carbon nanotubes (MWCNTs) is as functional fillers embedded in a solid matrix, such as plastics or coatings. Weathering and abrasion of the solid matrix during use can lead to environmental releases of the MWCNTs. Here we focus on a protocol to identify and quantify the primary release induced by weathering, and assess reproducibility, transferability, and sensitivity towards different materials and uses.

View Article and Find Full Text PDF

The first years in the twenty-first century have meant the inclusion of nanotechnology in most industrial sectors, from very specific sensors to construction materials. The increasing use of nanomaterials in consumer products has raised concerns about their potential risks for workers, consumers and the environment. In a comprehensive risk assessment or life cycle assessment, a life cycle schema is the starting point necessary to build up the exposure scenarios and study the processes and mechanisms driving to safety concerns.

View Article and Find Full Text PDF

In the current paper, a new strategy for risk assessment of nanomaterials is described, which builds upon previous project outcomes and is developed within the FP7 NANoREG project. NANoREG has the aim to develop, for the long term, new testing strategies adapted to a high number of nanomaterials where many factors can affect their environmental and health impact. In the proposed risk assessment strategy, approaches for (Quantitative) Structure Activity Relationships ((Q)SARs), grouping and read-across are integrated and expanded to guide the user how to prioritise those nanomaterial applications that may lead to high risks for human health.

View Article and Find Full Text PDF

The incorporation of small amounts of nanofillers in polymeric matrices has enabled new applications in several industrial sectors. The nanofiller dispersion can be improved by modifying the nanomaterial (NM) surface or predispersing the NMs to enhance compatibility. This study evaluates the effect of these compatibilization strategies on migration/release of the nanofiller and transformation of polyamide-6 (PA6), a thermoplastic polymer widely used in industry during simulated outdoors use.

View Article and Find Full Text PDF

The NanoRelease Food Additive project developed a catalog to identify potential engineered nanomaterials (ENMs) used as ingredients, using various food-related databases. To avoid ongoing debate on defining the term nanomaterial, NanoRelease did not use any specific definition other than the ingredient is not naturally part of the food chain, and its dimensions are measured in the nanoscale. Potential nanomaterials were categorized based on physical similarity; analysis indicated that the range of ENMs declared as being in the food chain was limited.

View Article and Find Full Text PDF

Large efforts are invested on the development of in vitro tests to evaluate nanomaterial (NM) toxicity. In order to assess the relevance of the adverse effects identified in in vitro toxicity tests a thorough understanding of the biokinetics of NMs is critical. We used different in vitro and in vivo test methods to evaluate cell uptake and oral absorption of titanium dioxide nanoparticles (TiO2 NPs).

View Article and Find Full Text PDF

Little information exists on the toxicological hazards associated to organo-modified clays. We evaluated the cytotoxicity of a series of pristine and organo-modified nanoclays in different cell lines. The calculated IC50 values for cell viability ranged from 1.

View Article and Find Full Text PDF