Publications by authors named "Vazquez E"

A phenyltriazine compound has been used for the first time as a monomer in the construction of a hydrogel. This physically cross-linked soft material showed blue fluorescence when excited under UV-light. Polymer formation and intermolecular H-bonds arising from triazine moieties operate as aggregation-induced emission (AIE) mechanisms.

View Article and Find Full Text PDF

Eighty areas with different structural and compositional characteristics made of bacterial inclusion bodies formed by the fibroblast growth factor (FGF-IBs) were simultaneously patterned on a glass surface with an evaporation-assisted method that relies on the coffee-drop effect. The resulting surface patterned with these protein nanoparticles enabled to perform a high-throughput study of the motility of NIH-3T3 fibroblasts under different conditions including the gradient steepness, particle concentrations, and area widths of patterned FGF-IBs, using for the data analysis a methodology that includes "heat maps". From this analysis, we observed that gradients of concentrations of surface-bound FGF-IBs stimulate the total cell movement but do not affect the total net distances traveled by cells.

View Article and Find Full Text PDF

Objective: Pathological Wnt pathway activation is a conserved hallmark of colorectal cancer. Wnt-activating mutations can be divided into: i) ligand-independent (LI) alterations in intracellular signal transduction proteins (, β-catenin), causing constitutive pathway activation and ii) ligand-dependent (LD) mutations affecting the synergistic R-Spondin axis (, -fusions) acting through amplification of endogenous Wnt signal transmembrane transduction. Our aim was to exploit differential Wnt target gene expression to generate a mutation-agnostic biomarker for LD tumours.

View Article and Find Full Text PDF

Two structurally and functionally unrelated proteins, namely Omomyc and p31, are engineered as CD44-targeted inclusion bodies produced in recombinant bacteria. In this unusual particulate form, both types of protein materials selectively penetrate and kill CD44 tumor cells in culture, and upon local administration, promote destruction of tumoral tissue in orthotropic mouse models of human breast cancer. These findings support the concept of bacterial inclusion bodies as versatile protein materials suitable for application in chronic diseases that, like cancer, can benefit from a local slow release of therapeutic proteins.

View Article and Find Full Text PDF

Background: Congenital heart disease (CHD) is the most prevalent congenital malformation affecting 1 in 100 newborns. While advances in early diagnosis and postnatal management have increased survival in CHD children, worrying long-term outcomes, particularly neurodevelopmental disability, have emerged as a key prognostic factor in the counseling of these pregnancies.

Methods: Eligible participants are women presenting at 20 to < 37 weeks of gestation carrying a fetus with CHD.

View Article and Find Full Text PDF

By the appropriate selection of functional peptides and proper accommodation sites, we have generated a set of multifunctional proteins that combine selectivity for CXCR4 cell binding and relevant endosomal escape capabilities linked to the viral peptide HA2. In particular, the construct T22-GFP-HA2-H6 forms nanoparticles that upon administration in mouse models of human, CXCR4 colorectal cancer, accumulates in primary tumor at levels significantly higher than the parental T22-GFP-H6 HA2-lacking version. The in vivo application of a CXCR4 antagonist has confirmed the prevalence of the CXCR4 tumor tissue selectivity over unspecific cell penetration, upon systemic administration of the material.

View Article and Find Full Text PDF

One-third of diffuse large B-cell lymphoma patients are refractory to initial treatment or relapse after rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone chemotherapy. In these patients, CXCR4 overexpression (CXCR4) associates with lower overall and disease-free survival. Nanomedicine pursues active targeting to selectively deliver antitumor agents to cancer cells; a novel approach that promises to revolutionize therapy by dramatically increasing drug concentration in target tumor cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the impact of two graphene-based materials, few-layers graphene (FLG) and graphene oxide (GO), on a type of green microalga, focusing on both short- and long-term exposures.
  • Short-term exposure revealed FLG at the cell wall interface but did not show internalization, while GO adhered to the external surface; both materials had minimal long-term negative effects on algal growth and photosynthetic processes.
  • The findings emphasized that FLG down-regulated a stress-related gene (HSP70-1), similar to effects from hydrogen peroxide, but overall suggested that the interactions with FLG were harmless, underscoring the need for more studies on non-model organisms in assessing GBMs' ecological
View Article and Find Full Text PDF

Scope: 2´-Fucosyllactose (2´FL) is an abundant oligosaccharide in human milk. It is hypothesized that its brain enrichment is associated with improved learning. Accumulation of 2´FL in organs, biological fluids, and feces is assessed in wild-type and germ-free mice.

View Article and Find Full Text PDF

Carbon-based nanomaterials represent a new tool in future medical applications. Thus, focusing on the evaluation of the degree of their safety has been growing in the last years. In this study we were particularly interested in understanding the impact of few layer graphene (FLG) on primary murine lymphocytes.

View Article and Find Full Text PDF

The main objective of this study was to evaluate the accuracy of prenatal ultrasound to diagnose corpus callosum alterations, compared to prenatal magnetic resonance imaging (MRI), postnatal image techniques (ultrasound and/or MRI), and post-mortem examination in terminated pregnancies. Retrospective review of 86 cases of prenatal ultrasound diagnosis of corpus callosum anomalies between January 2007 and December 2015 at a third level Maternal Fetal Medicine center. The study reviewed the findings of prenatal ultrasound and MRI, post-mortem examination in cases of termination of pregnancy (TOP) or stillbirths and postnatal ultrasound, and MRI in neonates.

View Article and Find Full Text PDF

Recently, ultrasonic molding (USM) has emerged as a promising replication technique for low and medium volume production of miniature and micro-scale parts. In a relatively short time cycle, ultrasonic molding can process a wide variety of polymeric materials without any noticeable thermal degradation into cost-effective molded parts. This research work reviews recent breakthroughs of the ultrasonic injection molding and ultrasonic compression molding process regarding the equipment and tooling development, materials processing and potential applications in the medical industry.

View Article and Find Full Text PDF

Oligonucleotide-protein conjugates have important applications in biomedicine. Simple and efficient methods are described for the preparation of these conjugates. Specifically, we describe a new method in which a bifunctional linker is attached to thiol-oligonucleotide to generate a reactive intermediate that is used to link to the protein.

View Article and Find Full Text PDF

The use of graphene nanomaterials (GNMs) for biomedical applications targeted to the central nervous system is exponentially increasing, although precise information on their effects on brain cells is lacking. In this work, the molecular changes induced in cortical astrocytes by few-layer graphene (FLG) and graphene oxide (GO) flakes are addressed. The results show that exposure to FLG/GO does not affect cell viability or proliferation.

View Article and Find Full Text PDF

Mediating mechanisms are important components of substance use research, as many substance use interventions work by targeting mediating variables. One issue that is common in substance use research is the presence of many responses of zero in a count variable that is the primary outcome of interest, such as number of drinks per week or number of substances used in the past month. The goal of this paper is to highlight the unique challenges that substance use researchers face when conducting mediation analysis with a zero-inflated count outcome.

View Article and Find Full Text PDF

Graphene (G), graphene oxide (GO) and graphene quantum dots (GQDs) have been introduced into a three-dimensional polymeric network based on polyacrylamide in order to ascertain the role of each nanomaterial in hydrogels. The hydrogel structure is not affected by the introduction of GQDs, since these nanoparticles do not form part of the polymeric network. G and GO modify the structure of the hydrogels but in a different way.

View Article and Find Full Text PDF

Glucocorticoids are used during prostate cancer (PCa) treatment. However, they may also have the potential to drive castration resistant prostate cancer (CRPC) growth via the glucocorticoid receptor (GR). Given the association between inflammation and PCa, and the anti-inflammatory role of heme oxygenase 1 (HO-1), we aimed at identifying the molecular processes governed by the interaction between HO-1 and GR.

View Article and Find Full Text PDF

The authors describe a case of infratentorial epidural abscess caused by community-associated methicillin-resistant (CA-MRSA) in a patient with a recent history of cutaneous furunculosis. This 29-year-old male presented with an occipital headache associated with fever, vomiting, and neck stiffness. Admission magnetic resonance imaging showed a retrocerebellar epidural abscess.

View Article and Find Full Text PDF

Proteins are organic macromolecules essential in life but exploited, mainly in recombinant versions, as drugs or vaccine components, among other uses in industry or biomedicine. In oncology, individual proteins or supramolecular complexes have been tailored as small molecular weight drug carriers for passive or active tumor cell-targeted delivery, through the de novo design of appropriate drug stabilizing vehicles, or by generating constructs with different extents of mimesis of natural cell-targeted entities, such as viruses. In most of these approaches, a convenient nanoscale size is achieved through the oligomeric organization of the protein component in the drug conjugate.

View Article and Find Full Text PDF

Aim: To perform a deep phenotype characterisation in a pedigree of 3 siblings with Leigh syndrome and compound heterozygous NDUFAF6 mutations.

Method: A multi-gene panel of childhood-onset basal ganglia neurodegeneration inherited conditions was analysed followed by functional studies in fibroblasts.

Results: Three siblings developed gait dystonia in infancy followed by rapid progression to generalised dystonia and psychomotor regression.

View Article and Find Full Text PDF

Introduction: The safety of using GBCAs to enhance the visibility of body structures is currently discussed due to possible gadolinium retention in brain structures. The aim of the study was to evaluate the effect of multiple exposures to macrocyclic GBCAs in children.

Materials And Methods: This retrospective, single-center study included data from 43 patients who had received ≥4 injections of macrocyclic GBCAs during MRI examinations over performed over 8 to 84 months.

View Article and Find Full Text PDF

The membrane pore-forming activities of the antimicrobial peptide GWH1 have been evaluated in combination with the CXCR4-binding properties of the peptide T22, in self-assembling protein nanoparticles with high clinical potential. The resulting materials, of 25 nm in size and with regular morphologies, show a dramatically improved cell penetrability into CXCR4 cells (more than 10-fold) and enhanced endosomal escape (the lysosomal degradation dropping from 90% to 50%), when compared with equivalent protein nanoparticles lacking GWH1. These data reveal that GWH1 retains its potent membrane activity in form of nanostructured protein complexes.

View Article and Find Full Text PDF

Three-dimensional scaffolds for cellular organization need to enjoy a series of specific properties. On the one hand, the morphology, shape and porosity are critical parameters and eventually related with the mechanical properties. On the other hand, electrical conductivity is an important asset when dealing with electroactive cells, so it is a desirable property even if the conductivity values are not particularly high.

View Article and Find Full Text PDF

Febrile neutropenia (FN) is a common dose-limiting toxicity of chemotherapy, with a profound impact on the evolution of patients with cancer, due to the potential development of serious complications, mortality, delays, and decrease in treatment intensity. This article seeks to present an updated clinical guideline, with recommendations regarding the diagnosis, prevention, and treatment of febrile neutropenia in adults with solid tumors. The aspects covered include how to properly approach the risk of microbial resistances, epidemiological aspects, considerations about the initial empirical approach adapted to the risk, special situations, and prevention of complications.

View Article and Find Full Text PDF

Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.

View Article and Find Full Text PDF