Publications by authors named "Vaudel G"

Ultrashort light pulses induce rapid deformations of crystalline lattices. In ferroelectrics, lattice deformations couple directly to the polarization, which opens the perspective to modulate the electric polarization on an ultrafast time scale. Here, we report on the temporal and spatial tracking of strain and polar modulation in a single-domain BiFeO thin film by ultrashort light pulses.

View Article and Find Full Text PDF

Projects of inertial confinement fusion using lasers need numerous optical components whose coatings allow the increase in their transmission and their resistance to high laser fluence. A coating process based on the self-assembly of sol-gel silica nanoparticles and a post-treatment with ammonia vapor over the surfaces of the optical components ("ammonia curing process") was developed and successfully optimized for industrial production. Manufacturing such antireflective coatings has clear advantages: (i) it is much cheaper than conventional top-down processes; (ii) it is well adapted to large-sized optical components and large-scale production; and (iii) it gives low optical losses in transmission and high resistances to laser fluence.

View Article and Find Full Text PDF

Controlling light polarization is one of the most essential routines in modern optical technology. Since the demonstration of optical pulse shaping by spatial light modulators and its potential in controlling the quantum reaction pathways, it paved the way for many applications as a coherent control of the photoionization process or as polarization shaping of terahertz (THz) pulses. Here, we evidenced efficient nonresonant and noncollinear χ-type light-matter interaction in femtosecond polarization-sensitive time-resolved optical measurements.

View Article and Find Full Text PDF

Heralded as one of the key elements for next generation spintronics devices, topological insulators (TIs) are now step by step envisioned as nanodevices like charge-to-spin current conversion or as Dirac fermions based nanometer Schottky diode for example. However, reduced to few nanometers, TIs layers exhibit a profound modification of the electronic structure and the consequence of this quantum size effect on the fundamental carriers and phonons ultrafast dynamics has been poorly investigated so far. Here, thanks to a complete study of a set of high quality molecular beam epitaxy grown nanolayers, we report the existence of a critical thickness of around ~6 nm, below which a spectacular reduction of the carrier relaxation time by a factor of ten is found in comparison to bulk Bi Te In addition, we also evidence an A1g optical phonon mode softening together with the appearance of a thickness dependence of the photoinduced coherent acoustic phonons signals.

View Article and Find Full Text PDF

The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3.

View Article and Find Full Text PDF

Generation of strain using light is a key issue for future development of ultrasonic devices. Up to now, photo-induced GHz-THz acoustic phonons have been mainly explored in metals and semiconductors, and in artificial nanostructures to enhance their phononic emission. However, despite their inherent strong polarization (providing natural asymmetry) and superior piezoelectric properties, ferroelectric oxides have been only poorly regarded.

View Article and Find Full Text PDF

We have developed a high-sensitivity, low-noise femtosecond imaging technique based on pump-probe time-resolved measurements with a standard CCD camera. The approach used in the experiment is based on lock-in acquisitions of images generated by a femtosecond laser probe synchronized to modulation of a femtosecond laser pump at the same rate. This technique allows time-resolved imaging of laser-excited phenomena with femtosecond time resolution.

View Article and Find Full Text PDF

Tailoring physical and chemical properties at the nanoscale by assembling nanoparticles currently paves the way for new functional materials. Obtaining the desired macroscopic properties is usually determined by a perfect control of the contact between nanoparticles. Therefore, the physics and chemistry of nanocontacts are one of the central issues for the design of the nanocomposites.

View Article and Find Full Text PDF

Revealing defects and inhomogeneities of physical and chemical properties beneath a surface or an interface with in-depth nanometric resolution plays a pivotal role for a high degree of reliability in nanomanufacturing processes and in materials science more generally. (1, 2) Nanoscale noncontact depth profiling of mechanical and optical properties of transparent sub-micrometric low-k material film exhibiting inhomogeneities is here achieved by picosecond acoustics interferometry. On the basis of the optical detection through the time-resolved Brillouin scattering of the propagation of a picosecond acoustic pulse, depth profiles of acoustical velocity and optical refractive index are measured simultaneously with spatial resolution of tens of nanometers.

View Article and Find Full Text PDF

A theoretical analysis of the transient optical reflectivity of a sample by a normalized Jones matrix is presented. The off-diagonal components of the normalized matrix are identified with the complex rotation of the polarization ellipse. Transient optical polarimetry is a relevant technique to detect shear acoustic strain pulses propagating normally to the surface of an optically isotropic sample.

View Article and Find Full Text PDF