Biochem Biophys Res Commun
December 2005
We report here the unexpected finding that recombinant or hepatic microsomal NADPH-cytochrome P450 reductase catalyzes the oxidative deformylation of a model xenobiotic aldehyde, 2-phenylpropionaldehyde, to the n-1 alcohol, 1-phenylethanol, in the absence of cytochrome P450. The flavoprotein and NADPH are absolute requirements, and the reaction displays a dependence on time and on NADPH and reductase concentration. Not surprisingly, the hydrophobic tail of the flavoprotein is not required for catalytic competence.
View Article and Find Full Text PDFA fundamental aspect of cytochrome P450 function is the role of the strictly conserved axial cysteine ligand, replacement of which by histidine has invariably resulted in mammalian and bacterial preparations devoid of heme. Isolation of the His-436 variant of NH2-truncated P450 2B4 partly as the holoenzyme was achieved in the present study by mutagenesis of the I-helix Ala-298 residue to Glu and subsequent conversion of the axial Cys-436 to His. The expressed A298E/C436H double mutant, cloned with a hexahistidine tag, had a molecular mass equivalent to that of the primary structure of His-tagged truncated 2B4 and the sum of the two mutated residues, and contained a heme group which, when released on HPLC, showed a retention time and spectrum identical to those of iron protoporphyrin IX.
View Article and Find Full Text PDFIntramolecular and intermolecular kinetic isotope effects (KIEs) were determined for hydroxylation of the enantiomers of trans-2-(p-trifluoromethylphenyl)cyclopropylmethane (1) by hepatic cytochrome P450 enzymes, P450s 2B1, Delta2B4, Delta2B4 T302A, Delta2E1, and Delta2E1 T303A. Two products from oxidation of the methyl group were obtained, unrearranged trans-2-(p-trifluoromethylphenyl)cyclopropylmethanol (2) and rearranged 1-(p-trifluoromethylphenyl)but-3-en-1-ol (3). In intramolecular KIE studies with dideuteriomethyl substrates (1-d(2)) and in intermolecular KIE studies with mixtures of undeuterated (1-d(0)) and trideuteriomethyl (1-d(3)) substrates, the apparent KIE for product 2 was consistently larger than the apparent KIE for product 3 by a factor of ca.
View Article and Find Full Text PDFThe function of the unique axial thiolate ligand of cytochrome P450 has been investigated by mutagenesis of the active-site cysteine with other amino acids in NH(2)-truncated P450s 2B4 and 2E1. The expressed Ser-436 variant of P450 2B4 was highly purified but incurred considerable heme loss. The pyridine hemochrome spectrum of C436S is characteristic of protoporphyrin IX, and the absolute spectra display Soret maxima at 405 nm (ferric), 422 nm (ferrous), and 413 nm (ferrous CO).
View Article and Find Full Text PDFEvidence for multiple functional active oxidants in cytochrome P450-catalyzed reactions was previously obtained in this laboratory with mutants in which proton delivery was perturbed by replacement of the highly conserved threonine residue in the active site by alanine, thus apparently interfering with the conversion of the peroxo-iron to the hydroperoxo-iron and the latter to the oxenoid-iron species. These enzymes have now been employed to examine the reaction in which cytochrome P450 in liver microsomes is known to effect ipso-substitution, the elimination of p-substituents in phenols to yield hydroquinone. As shown with purified NH(2)-truncated cytochromes in a reconstituted enzyme system, the reaction exhibits an absolute requirement for cytochrome P450 and NADPH-cytochrome P450 reductase.
View Article and Find Full Text PDFThe genotype at the NAT1* locus of an interethnic population of 38 unrelated subjects was determined by direct sequencing of 1.6-kb fragments amplified by PCR. The coding exon alone and together with the 3' noncoding exon of the wild-type (NAT1*4) and the three mutant alleles (NAT1*10, *11, and *16) detected was expressed in Escherichia coli and COS-1 cells, respectively, and the cytosolic fraction of mononuclear leukocytes from NAT1*4/*4 and NAT1*10/*10 homozygotes was also isolated.
View Article and Find Full Text PDFThree N-acetyltransferase genes (NAT*) were detected in inbred parental and congenic mice. Direct sequencing of NAT2* and liver cytosolic N-acetylation activity determinations with NAT2-specific (p-aminobenzoic acid) and NAT2-selective (2-aminofluorene) substrates have established that the acetylator congenic A.B6 and B6.
View Article and Find Full Text PDFA consolidated classification system is described for prokaryotic and eukaryotic N-acetyltransferases in accordance with the international rules for gene nomenclature. The root symbol (NAT) specifically identifies the genes that code for the N-acetyltransferases, and NAT* loci encoding proteins with similar function are distinguished by Arabic numerals. Allele characters, denoted by Arabic numbers or by a combination of Arabic numbers and uppercase Latin letters, are separated from gene loci by an asterisk, and the entire gene-allele symbols are italicized.
View Article and Find Full Text PDFTwo kilobase segments of the 5'-untranslated regions of the human and rabbit butyrylcholinesterase (BCHE) genes were characterized. The sequences shared extensive identity except for a 333-base pair (bp) Alu repeat present only in human BCHE. One single transcription start site was found in both genes with the techniques of primer extension, amplification of the 5'-end of mRNA, and RNase protection.
View Article and Find Full Text PDFArch Biochem Biophys
February 1993
The human N-acetylation polymorphism is a genetic trait phenotypically reflected by differences in N-acetyltransferase (NAT) activity with therapeutic agents (rapid and slow acetylation), but a genetic invariability in N-acetylation of some arylamine drugs is also known. There are two highly similar human NAT genes: NAT1 is thought to encode a genetically invariant protein, whereas NAT2 has conclusively been shown to represent a polymorphic locus. This study demonstrates the presence of discrete NAT1 structural variants among Caucasians.
View Article and Find Full Text PDFThe molecular genetic basis of N-acetylation polymorphism has been investigated in inbred mouse models of the human acetylation polymorphism. Two genomic clones, Nat1 and Nat2, were isolated from a C57BL/6J (B6) mouse (rapid acetylator) genomic library. The Nat1 and Nat2 genes both have intronless coding regions of 870 nucleotides and display greater than 47% deduced amino acid similarity with human, rabbit, and chicken N-acetyltransferases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 1991
Classification of humans as rapid or slow acetylators is based on hereditary differences in rates of N-acetylation of therapeutic and carcinogenic agents, but N-acetylation of certain arylamine drugs displays no genetic variations. Two highly homologous human genes for N-acetyltransferase (NAT; arylamine acetyltransferase, acetyl CoA:arylamine N-acetyltransferase, EC 2.3.
View Article and Find Full Text PDFWe have isolated five genomic clones for human butyrylcholinesterase (BChE), using cDNA probes encoding the catalytic subunit of the hydrophilic tetramer [McTiernan et al. (1987) Proc. Natl.
View Article and Find Full Text PDF1. Metabolism of 14C-labelled benzo[a]pyrene (-)trans-7,8-dihydrodiol to protein- and DNA-binding products in a reconstituted enzyme system proceeds 5 to 10 times faster with rabbit cytochrome P-450 LM4 than with LM2. 2.
View Article and Find Full Text PDFThe hydroxylation of prostaglandin (PG) E1, PGE2, and PGA1 was investigated in a reconstituted rabbit liver microsomal enzyme system containing phenobarbital-inducible isozyme 2 or 5,6-benzoflavone-inducible isoenzyme 4 of P-450, NADPH-cytochrome P-450 reductase, phosphatidylcholine, and NADPH. Significant metabolism of prostaglandins by isozyme 2 occurred only in the presence of cytochrome b5. Under these conditions, PGE1 hydroxylation was linear with time (up to 45 min) and protein concentration, and maximal rates were obtained with a 1:1:2 molar ratio of reductase: cytochrome b5:P-450LM2.
View Article and Find Full Text PDFStopped flow studies were undertaken to examine the kinetics of reduction of 5,6-benzoflavone-inducible P-450 LM4 by NADPH in the presence of NADPH-cytochrome P-450 reductase and phospholipid under anaerobic CO at 25 degrees C. The reaction exhibited biphasic kinetics irrespective of NADPH concentration or of the molar ratio of reductase to P-450 LM4. The apparent first order rate constants for the fast and slow phases were determined to be 0.
View Article and Find Full Text PDFHighly purified cytochromes P-450(LM2) and P-450(LM4) and partially purified P-450(LM1), P-450(LM3b), and P-450(LM7) from rabbit liver microsomes exhibit different catalytic activities in the metabolism of benzo[a]pyrene (BzP) and (-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene [(-)trans-7,8-diol] in a reconstituted enzyme system. The two highly purified cytochromes also exhibit differences in the activation of BzP and (-)trans-7,8-diol to intermediates that bind to DNA, as well as in the stereoselective conversion of (-)trans-7,8-diol to the highly mutagenic and carcinogenic diol-epoxides r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10- tetrahydrobenzo[a]pyrene (diol-epoxide I) and r - 7,t - 8 - dihydroxy - c - 9,10 - oxy - 7,8,9,10 - tetrahydrobenzo[a]pyrene (diol-epoxide II). P-450(LM2) is more active than P-450(LM4) in the metabolism of BzP and in its conversion to products that bind to DNA.
View Article and Find Full Text PDF